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Roots and all: An economical algorithm
Farid Haggar1

Every polynomial of degree n can be expressed as a product of factors,

p(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an

= a(x− α1)(x− α2) · · · (x− αn).

Note that the αi, which may be real or complex, are the roots of the polynomial, i.e.,
p(αi) = 0 for all i = 1, 2, . . . , n. It is natural to look for relationships between the roots
of the polynomial αi and the coefficients ai. Two well-known relations are

n∑
i=1

αi = −a1
a0

and
n∏

i=1

αi = (−1)n
an
a0
.

A polynomial with a0 = 1 is called a monic polynomial and in this case we can write

p(x) =
n∏

i=1

(x− αi)

=
n∑

i=0

(−1)iωix
n−i

= ω0x
n − ω1x

n−1 + ω2x
n−2 − · · ·

where

ω0 = 1,

ω1 =
∑
j

αj,

ω2 =
∑
j<k

αjαk,

ω3 =
∑
j<k<l

αjαkαl,

...
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It is possible to find identities relating the sums of the powers of the roots defined
by

si =
∑
j

(αj)
i, i = 1, 2, . . . ,

to the coefficients, ωj , of the monic polynomial, without actually finding the roots αk

explicitly. These identities are known as Newton identities, or Newton–Girard formu-
lae.

It is straightforward to find recursion relations linking ωi and si. Note that

n∑
j=1

p(αj) =
n∑

i=0

(−1)iωi

n∑
j=1

αn−j
j

=
n∑

i=0

(−1)iωisn−i

= 0,

where ω0 = 1, s0 = n. We now separate off the i = 0 contribution in the above sums
and solve separately for sn and ωn to arrive at

sn =
n∑

i=1

(−1)i−1ωisn−i (1)

and

ωn =
1

n

n∑
i=1

(−1)i−1siωn−i. (2)

We can now use the recursion relations to obtain si as functions of ω1, ω2, . . . , ωi;
and ωi as functions of s1, s2, . . . , si. The first few terms are as follows:

s1 = ω1

s2 = ω2
1 − 2ω2

s3 = ω3
1 − 3ω1ω2 + 3ω3

s4 = ω4
1 − 4ω2

1ω2 + 4ω1ω3 + 2ω2
2 − 4ω4

...
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and

ω1 = s1

ω2 =
s21
2
− s2

2

ω3 =
s31
6
− s1s2

2
+
s3
3

ω4 =
s41
24
− s21s2

4
+
s1s3

3
+
s22
8
− s4

4
...

By proceeding recursively in this fashion we can obtain ωi as functions of the s1, s2,
. . . , si for any finite i, but the process is laborious. We now describe a more economical
way to obtain these expressions for ωi.

In general we can write

sn = sn(ω1, ω2, . . . , ωn)

=
1

kn
sn(kω1, k

2ω2, . . . , k
nωn),

and

ωn = ωn(s1, s2, . . . , sn)

=
1

kn
ωn(ks1, k

2s2, . . . , k
2sn),

where k 6= 0. We show that the coefficients in sn(ω1, ω2, . . . , ωn) and ωn(s1, s2, . . . , sn)
can be determined by solving a system of linear equations as follows:

The selection α1 = α2 = · · · = αn = 1 is such that si = n, ωi =
(
n
i

)
i = 1, 2, . . . , n,

hence

sn

((
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

))
= n,

ωn(n, n, . . . , n) = 1.

Since the number of roots assigned have no bearing on the outcome (they are merely
passengers), the equations above can be extended to the identities

sn

((
j

1

)
,

(
j

2

)
, . . . ,

(
j

n

))
≡ j, ∀j (3)

ωn[j] := ωn(j, j, . . . , j) ≡
(
j

n

)
(4)

where
(
j
n

)
= 0 if j < n.
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For example,
ω3(s1, s2, s3) = as31 + bs1s2 + cs3,

where a, b, c satisfy the equations

ω3[1] = a+ b+ c =

(
1

3

)
= 0,

1

2
ω3[2] = 4a+ 2b+ c =

1

2

(
2

3

)
= 0,

1

3
ω3[3] = 9a+ 3b+ c =

1

3

(
3

3

)
=

1

3
.

The number of terms in sn(ω1, ω2, . . . , ωn) and ωn(s1, s2, . . . , sn) is the partition func-
tion Π(n) of n, namely the number of integer solutions (x1, x2, . . . , xn), xk ≥ 0 of the
equation

n∑
k=1

kxk = n.

An alternate algorithm to (2) for ωn follows:
Define ω(i)

n , i = 1, 2, . . . , n− 1 by

ω(1)
n = ωn(0, s2, s3, . . . , sn)

ω(2)
n = ωn(0, 0, s3, . . . , sn)

ω(3)
n = ωn(0, 0, 0, s4, . . . , sn)

...

so that the number of terms in ω(i)
n is the i-th partition function Π(i)(n) of n, namely the

number of integer solutions (xi+1, xi+2, . . . , xn), xk ≥ 0 of

n∑
k=i+1

kxk = n

and it satisfies the difference equation

Π(i)(n)− Π(i−1)(n) = −Π(i−1)(n− i), Π(0)(n) = Π(n) (5)

leading to

Π(i)(n) =

{ ∑bn
2
c

k=i+1 Π(k−1)(n− k) + 1 for 0 ≤ i ≤ bn
2
− 1c

1 for bn
2
c ≤ i ≤ n− 1,

(6)

where bn
2
c is the largest integer smaller or equal to n

2
, since Π(k−1)(n−k) = 0 for k > bn

2
c.
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Moreover, the partial derivatives of ω(i)
n with respect to s1, s2, . . . , sn satisfy the

canonical relations

∂ω
(i)
n

∂sk
=

{
(−1)k−1

k
ω
(i)
n−k for 0 ≤ i ≤ bn

2
− 1c, i+ 1 ≤ k ≤ n− i− 1

0 otherwise,
(7)

where ω(0)
n = ωn. Lastly, integrating (7) in accordance with (6) yields

ω(i)
n =

bn
2
c∑

k=i+1

∫
(−1)k−1

k
ω
(k−1)
n−k ∂sk +

(−1)n−1

n
sn, i = 0, 1, . . . , n− 1 (8)

where the sought after algorithm for ωn corresponds to i = 0.
Examples:

(i)

ω
(1)
4 =

∫
−1

2
ω
(1)
2 ∂s2 −

s4
4

ω
(1)
2 = −s2

2
∴
∫
−1

2
ω
(1)
2 ∂s2 =

s22
8
.

(ii)

ω5 =

∫
ω4∂s1 +

∫
−1

2
ω
(1)
3 ∂s2 +

s5
5∫

ω4∂s1 =
s51

120
− s31s2

12
+
s21s3

6
+
s1s

2
2

8
− s1s4

4

ω
(1)
3 =

s3
3

∴
∫
−1

2
ω
(1)
3 ∂s2 = −s2s3

6
.

(iii)

ω6 =

∫
ω5∂s1 +

∫
−1

2
ω
(1)
4 ∂s2 +

∫
1

3
ω
(2)
3 ∂s3 −

s6
6∫

ω5∂s1 =
s61

720
− s41s2

48
+
s31s3
18

+
s21s

2
2

16
− s21s4

8
− s1s2s3

6
+
s1s5

5

ω
(1)
4 =

s22
8
− s4

4
∴
∫
−1

2
ω
(1)
4 ∂s2 = − s

3
2

48
+
s2s4

8

ω
(2)
3 =

s3
3

∴
∫

1

3
ω
(2)
3 ∂s3 =

s23
18
.

The latter is less exhausting than (2) with n = 6, which carries a surplus of
∑5

i=0 Π(i)−
Π(6) = 1+1+2+3+5+7−11 = 8 like terms to the ones allocated. This surplus grows
exponentially with n: Possibly an incentive to go economically?
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