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History of Mathematics:

The Real Numbers - Making them Respectable
Michael A B Deakin'

In my last column, I described how, at the cost of some apparent artificiality and
seemingly needless complication, the imaginary numbers eventually became respectable.
Here I describe the analogous process with the real numbers. Paradoxically, the story
of how the real numbers themselves became respectable is more convoluted and the
processes involved took thousands rather than hundreds of years. Moreover the topic
still causes controversy today (although no one is claiming that the reals aren’t re-
spectable). But let us begin at the beginning. The real numbers are made up of two
sets: the rational numbers and the irrational ones. In my column for Vol 41, No 2, I
described the discovery (by the ancient Greeks) of the irrational numbers.?

Just as the imaginary numbers needed justification if it was to be accepted that the
usual laws of arithmetic applied to them, so also one needs to demonstrate that the
irrational numbers can be manipulated in exactly the same way as the rationals. This
was a question never raised in my own early mathematical education, and so when
I did come to learn of the incorporation of the irrational numbers into the number-
line and the seemingly complicated logic underlying this, I had rather much the same
reaction as I did when I learned of Hamilton’s approach to the complex numbers (as
described in my last column): why all this rigmarole?

That the need existed for a justification of the extension of arithmetic laws to cover
the irrationals was perhaps most pointedly made by the mathematician Richard Dedekind
(1831-1916), who wrote a paper whose title is most accurately translated as “What are
numbers and what should they be?” (Sadly, the official English translation of this pa-
per, under the title “The nature and meaning of numbers”, is of poor quality, a point
noted in my column in Vol 44, No 1.) In the course of this he pointed out the need to
prove results such as v/2 x v/3 = 1/6, claiming, perhaps rather pompously, that to the
best of his knowledge such results had never been established before.

In what follows, I will describe several approaches to the real numbers, but will
concentrate on one in particular. This is the one that will almost certainly be the most
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familiar to Parabola’s readers. Certainly it was my own and it is described by the
Wikipedia entry Construction of the real numbers as “[having] the advantage that
it is close to the way we are used to thinking of real numbers”. I shall begin by look-
ing at the decimal expansions of the different numbers. It was first put forward by
the Dutch polymath Simon Stevin (1548-1620),> who was an early champion of the
decimal system.

So let us begin by looking at the way in which different numbers are represented
by decimals. If we are representing a fraction (i.e. a rational number), its decimal
equivalent may either terminate (e.g. 3 = 0.5) or else repeat a cyclic pattern indefinitely
(e.g. 3 = 0.333...0r + = 0.142857142857 ... ). For each rational number, a decimal
equivalent may be found by means of a simple division process that readers will be
familiar with. It is also true that every recurring (repeating) decimal (i.e. one that
exhibits a cyclic pattern) may be converted to a fraction. I will demonstrate the process
by means of an example. We have 33 = 0.678571428571428571428... . The decimal
consists of two parts: an initial non-cyclic portion, 0.678, and a subsequent cyclic one,
571428571428 ... . There are various ways to write such expressions and the one I
will choose is 19/28 = 0.678571428. The bar (or vinculum) above the final six digits
indicates that these digits repeat: the expression 571428 is termed the repetend. There
is a simple way to use the decimal expansion to recover the original fraction.

For the initial section, represent this as a fraction in the usual way: 0.678 =
678
1000

To this fraction add another constructed as follows: in the numerator place
the repetend itself, and in the denominator put a 9 for each digit of the
repetend followed by a 0 for each of the initial digits.

R . : : 571428 . 678
In this instance, this second fraction is gy5555055- Thus the total is {555 +

STLA () 678 571 428 571428 571 428... = 0.678 571428, as claimed.

999999000

(Ileave to the reader the task of demonstrating that this procedure is perfectly gen-
eral; it makes a nice example in the theory of the geometric progression.)

Thus for every rational number, we may assign a terminating or repeating deci-
mal and each such decimal represents a rational number. A further point is that the
terminating decimals are in fact special cases of repeating decimals. Thus, for exam-
ple, 0.5 = 0.5000... , with a repetend consisting entirely of zeros. (A minor annoyance
is that there are in fact two such repeating decimals for each terminating one; for ex-
ample, 0.5 = 0.5000... = 0.4999... . One sometimes finds non-mathematicians who
maintain that 0.5000... # 0.4999... . I don’t know why they pick on this situation, when
they quite happily accept that 0.5 = 3 = 2 = 50%, etc. But such is life!)

Thus we can say that the set of rational numbers is precisely the same as the set of
recurring decimals. It therefore follows that the non-recurring decimals must represent
irrational numbers. Each non-recurring decimal represents an irrational number and
every irrational number can be represented by an infinite non-recurring decimal.

3 Another aspect of Stevin’s work was the subject of an earlier column (Function, Vol. 22, Part 5).



However, this was not how Dedekind saw matters. He saw a real number (v/2 for
example) as a “cut” in the number line, separating it into two distinct classes. Thus
in the case of /2 we have a class £ (for “lower”) comprising the set of all rational
numbers r such that 7* < 2 and another class U (for “upper”) comprising the set of all
rational numbers r such that > > 2. The irrational number (\/§ in this case, but the
principle is the same for any irrational number) was the set £ (or U or both).* Thus on
Dedekind’s approach to the reals, one way to view the irrationals is as infinite sets of
rational numbers. Alternatively the number /2 itself could be thought of a “separator”
that kept these two sets apart.

I first learned of this account in 1957, when I went to The University of Melbourne
and was taught first year mathematics by Associate Professor Felix Behrend.” T still
have my notes from this course, and checking them, I discovered that Behrend used
the decimal representation of an irrational number and the idea of a separator. The irra-
tional number was seen as the limit of an infinite sequence of rational approximations.
That limit itself, however, is not itself rational. It may however be looked at in the fol-
lowing way. Consider the set of approximations to v/2: 1, 1.4, 1.41, 1.414, 1.4142, ...
Each of these numbers is rational and they are all members of the set £ generated by
V2 as they all lie below the actual value of V2. However, if we take any number greater
than /2, this will bound the set £ and will be what we term an “upper bound”. There
are of course many such upper bounds, all larger than all the members of the set L. If
we look at the set of such upper bounds, we may ask if it has a least member. Intu-
itively it seems so, although this is not a matter of proof; rather it is incorporated as an
axiom, and /2 is identified with this “least upper bound” of the set £. The axiom that
gives us this identity is now termed “Dedekind’s Axiom”.

The approaches to the real numbers via the decimal expansion or the Dedekind
cut are not the only possibilities. In fact there are quite a lot of others, but pre-eminent
among these is an account that uses “Cauchy sequences”. A sequence is a set of numbers
forming a succession: ¢; for the first, ¢, for the second, and so on. Such a sequence is
said to converge to a limit [ if the successive terms become closer and closer to [. The
way in which this approach is tested is to pick a (usually very small) number ¢ and
check whether or not the difference |t,, — [| < ¢, whenever n exceeds some number N
whose value will depend on that of e. I gave an example in my third column for 2009,
in which a sequence 1, %, ;1, %, etc. converges to the number 2. It never actually gets
there but the shortfall may be made arbitrarily small. If we apply this approach to the
approximations to V2, we aim to define v/2 as the number toward which the sequence
1, 1.4, 1.41, 1.414, 1.4142, ... converges.

However, we can’t apply this analysis directly to the case here because the aim is
to find a way to define the limit / (in this case v/2) and all we have at our disposal at
this stage is the set of rational numbers. This difficulty is overcome by means of a

“Dedekind decided on “both”. Modern authors tend to choose one or other of the remaining possibil-
ities. It may be demonstrated that it doesn’t matter which convention we adopt; they are all equivalent.
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subterfuge. We take terms of the sequence (of rational numbers in this case) and ask if
they are getting ever closer to one another. The test is whether we can ensure that for
every small ¢ we can ensure that |¢, — t,,| < ¢, whenever n and m both exceed some
number N. If this condition is met, the sequence is called a Cauchy sequence.®

If we adopt as an axiom the principle that every Cauchy sequence has a limit, then
the Cauchy sequence of rational approximations defines that irrational limit. Indeed
it may be shown that this axiom is equivalent to Dedekind’s axiom. The Cauchy se-
quence axiom is particularly easy to accept for a sequence that homes in on its limit
from both sides, as in the case of 1, 1.5, 1.4, 1.42,1.41, 1.413, etc. as approximations
to v/2, but it also applies to sequences such as 1, 1.4, 1.41, 1.414, 1.4142, etc. that come
from just one side.

Many mathematicians prefer the Cauchy sequence account because it leads natu-
rally into more general areas of pure mathematics, to a branch of algebra known as
“field theory”. However, I will not take this path here, but rather note that all the
different approaches to the reals are equivalent to one another. The use of decimal rep-
resentations, the different versions of the Dedekind cut (the sets £ and/or U, or else
the separator limit) and the similar versions of the Cauchy sequence approach all yield
mathematically equivalent results. In fact one way to prove this is to show that each is
equivalent to the infinite decimal version.

Thus, any one of these approaches (and of the various others that I have not dis-
cussed) sufficed to make the irrationals (and thus all the reals) “respectable”. Never-
theless many questions remain, and in the rest of this article, I will concentrate on one
of these before returning to the question with which I began: how do we know that the
usual rules of arithmetic apply to them?

The question I will look at before going back to the start concerns the use of the
set £ (say) as the definition of an irrational number. In the case of /2, we can say
that £ is the set of all rational numbers r such that 7> < 2. However, on the decimal
approach, we identify V2 as the set {1, 1.4, 1.41, 1.414, ...}, a subset of the set £ and
thus apparently different. This matter, however, may be resolved by reference to the
work of Dedekind’s slightly younger contemporary Georg Cantor (1845-1918). Cantor
is best remembered today for his work on infinite sets. I will start with a very simple
example. Consider two sets: the set of counting numbers {1, 2, 3, 4, ...} and the set of
even numbers {2, 4, 6, 8, ...}. The second is obviously a subset of the first, and yet on
another view, the two sets are equivalent. For each member of the first set, there is a
corresponding member of the second and vice versa. The sets are said to be in one-to-one
correspondence. This only works because the sets involved are infinite; if we tried this
trick with, let us say, the numbers less than 100, then we would run out of pairings,
and leave 50 unpaired counting numbers. This difficulty arises because of the upper
limit imposed on the numbers; when the sets are infinite, there is no such upper limit
and the one-to-one correspondence can go ahead.

Any set that can be placed in one-to-one correspondence with the counting num-

®The name honors Augustin-Louis Cauchy, one of mathematics’ all-time greats. Among his many
achievements was the establishment of a sound foundation for the calculus. I described some of this in
my column in Vol 41, No 1.



bers is said to be countable. Cantor was able to demonstrate that the set of rational
numbers is countable. It follows that any infinite subset of the rationals is also count-
able. Any two such sets can thus be placed in one-to-one correspondence with one
another. So the set {1, 1.4, 1.414, 1.4142, ...} and the full set L are equivalent, just as
the set of even numbers is equivalent to the set of counting numbers. The members of
these two sets may be paired off, so that, on this level, they amount to the same thing!

But now to examine the main question: how do we know that the irrational num-
bers obey the basic laws of arithmetic? It is this question that occupied the late David
Fowler in a paper he named after Dedekind: “Dedekind’s Theorem: v/2 x /3 = /6 *7
Dedekind had claimed that results such as this “had never been established before”.
Fowler would seem to concur, but I think that both Dedekind and he are wrong here.
Much of the rest of this paper will be devoted to a critique of Fowler’s thesis. I em-
bark on this with a certain reluctance in view of Fowler’s eminence. He was one of the
twentieth century’s best historians of mathematics. I sided with him in his debate with
Unguru on the question of mathematical induction (see my column for Vol 49, No 3)8.
However, in this present paper he was below his best. In particular, he embarked on
criticisms (unfair ones in my book) of other authors” work.

For example: “ Many mathematicians have a touching and naive belief that arith-
metic operations on decimals pose no problems; or they pretend to believe this, as in
some circumstances the most scrupulously honest among us may sometimes pretend
to believe in Father Christmas ...; or perhaps have never considered the question to be
problematic.”

The key question is “Can we justify the application of the basic rules of arithmetic
to the irrational numbers?” In my column for Vol 50, No 1, I showed that the basic laws
of multiplication were obeyed by the natural numbers, and it is only a minor extension
of this proof to demonstrate that the rational numbers also obey these rules. I won't
stop to prove this here, but it is a point also acknowledged by Fowler. What is at issue
is whether or not we can extend the application of these rules to the irrationals. The
rules in question are:

The commutative law of multiplication: a x b = b x a, and the associative
law of multiplication: a x (b x ¢) = (a X b) x c.

Again, I won't stop to give the formal proof of the next step (which is tedious rather
than enlightening), but I will pass on the conclusion: that we may dispense altogether
with parentheses, and shuffle the various factors in any way at all without affecting
the product.

The key question is this: does the result just announced apply also to the irrational
numbers? This is where Fowler raises objections. He shows that if irrational numbers
are defined as infinite decimals, then it is difficult, if not impossible, to describe an
algorithm (process) that gives the product of two irrational numbers.

"Published in American Mathematical Monthly in October 1992.

8] also have a more personal reason to respect the late Professor Fowler’s memory. When some years
ago, Monash University sought to dismiss Professor Hans Lausch and myself, Professor Fowler’s was
one of the influential international voices raised successfully on our behalf.
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However, to my mind, he misses the point. The issue is whether the basic laws of
multiplication apply to the irrationals. They certainly would if such an algorithm were
available, but this is not the only way to approach the problem. A passage I omitted
from the “Father Christmas” quote reproduced above directs the reader’s attention to
a passage in a textbook by Lipman Bers. Bers was a very considerable mathematician,
and, as I see things, his account is quite in order. True, he does not dot every i and cross
every t, but the gist of the argument is presented clearly enough.

Very much the same argument was presented in 1821 by Cauchy in his text Cours
d’analyse. This is also given notice by Fowler, who writes:

“Cauchy’s [text] ... has a long appended Note 1 ... in which he defines arithmetical
operations on ‘numbers’ ... in rather vague terms of manipulations of rational approx-
imations ... .”

Here is what Cauchy actually said in relation to the product AB (I quote from the
excellent recent translation and commentary by Bradley and Sandifer): “When B is
an irrational number, we can obtain rational numbers that approach it more and more
closely. We can easily see that under the same hypothesis the product of A by ratio-
nal numbers in question approaches a limit more and more closely. This limit is the
product of A by B.”

This is supplemented by the remark that the factors in a product can be addressed
in any order: “The product of several quantities remains the same in whatever order
we multiply them”. In other words, although Cauchy doesn’t say it explicitly, the
commutative law and the associative laws both hold. The proofs are not given in detail
but may readily be supplied from outlines that are. Suppose, for example, that the
commutative law were to fail. Then for some pair of irrational numbers A, B we would
have AB # BA, but all the rational approximations (however exact they might be)
would obey the law. This is clearly contradictory.

Fowler almost grants as much: “ ... vague though his account often is, Cauchy does
not fudge the issue by describing arithmetic in terms of terminating decimal expan-
sions, and then pretend that he has described arithmetic in general.”

But now, everything that is needed to show that the reals may be manipulated
exactly as rational numbers has been shown, and we are able to use ordinary arithmetic
in our dealings with the real numbers.

With this behind us, it is easy to prove “Dedekind’s Theorem”. Here is one ordering
of the steps involved.

VEx V3= [((V2x VB)") = VVEX VX VEX V3
VVEXVEXVBX B = VIX3 =\,

All that is used here is the reordering of the various factors, as envisaged by Cauchy.

One final remark is perhaps in order. Irrational numbers themselves fall into two
categories: the algebraic and the transcendental. Algebraic irrationals are the roots of
polynomial equations with integral coefficients. Clearly v/2 and+/3 are algebraic, and it
is this that allows the proof of “Dedekind’s Theorem”. Transcendental irrationals like
7 are more difficult to deal with.




