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Numerically computed double, triple and quadruple
planar bubbles for density rp

Marcus Collins1

1 Introduction

The isoperimetric problem is one of the oldest in mathematics. It asks for the least-
perimeter way to enclose given volume. For a single volume in Euclidean space (with
uniform density) of any dimension, the well-known solution is any sphere. With den-
sity rp, Boyer et al. [1] found that the solution for a single volume is a sphere through
the origin. For two volumes in Euclidean space, Reichardt [11] showed that the stan-
dard double bubble, consisting of three spherical caps meeting along a sphere in threes
at 120◦ angles as in Figure 1, provides an isoperimetric cluster. Hirsch et al. [7] conjec-
tured that the isoperimetric cluster for two volumes in Rn with density rp for p > 0 is
the same Euclidean standard double bubble with a vertex at the origin, as in Figure 2,
and showed that it is better for example than putting the centre at the origin. But it is
not even known whether each region and the whole cluster are connected. As for the
triple bubble, the minimizer in the plane with density rp cannot just be the Euclidean
minimizer [14] with central vertex at the origin, because the outer arcs do not have
constant generalized curvature.

Hirsch et al. [7] proved existence, boundedness and regularity: a planar isoperimet-
ric cluster consists of constant generalized-curvature curves meeting in threes at 120◦

(see our Proposition 4).
In this paper, we numerically compute double, triple and quadruple bubbles in the

plane with density rp for various p > 0, using Brakke’s Evolver [2]. Some videos are
available on Google Drive. Proposition 7 supports the conjecture of Hirsch et al. [7]
that the optimal double bubble is the Euclidean one with one vertex at the origin (Fig-
ure 2). Proposition 8 indicates that the optimal triple bubble resembles the Euclidean
one (Figure 1) with one vertex at the origin, but as p increases, one circular arc from
the origin shrinks so that all arcs pass near the origin and remain approximately cir-
cular, as in Figure 3. (A constant-generalized-curvature curve is a circle if and only
if it passes through the origin (Remark 6)). Proposition 10 indicates that the optimal
quadruple bubble resembles the Euclidean one (Figure 1) with a vertex at the origin
for small p (Figure 7), but as p increases to 1, one circular arc from the origin shrinks
to a point and thereafter four arcs meet at the origin (Figure 8). This not does violate
regularity because the density vanishes at the origin.

1Marcus Collins is a sophomore at Harvard-Westlake School, CA.
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(a) Single bubble (b) Double bubble

(c) Triple bubble (d) Quadruple bubble

Figure 1: The optimal Euclidean single, double, triple and quadruple bubbles with
equal areas.

History

Examination of isoperimetric regions in the plane with density rp began in 2008 when
Carroll et al. [3] showed that the isoperimetric solution for a single area in the plane
with density rp is a convex set containing the origin. It was something of a surprise
when Dahlberg et al. [4] proved that the solution is a circle through the origin. In 2016,
Boyer et al. [1] extended this result to higher dimensions. In 2019, Huang et al. [8]
studied the 1-dimensional case, showing that the best single bubble is an interval with
one endpoint at the origin and that the best double bubble is a pair of adjacent intervals
which meet at the origin. Ross [13] showed that, in R1, multiple bubbles start with the
two smallest meeting at the origin and the rest in increasing order alternating side to
side.
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2 Definitions

Definition 1 (Density Function). Given a smooth Riemannian manifold M , a density on
M is a positive continuous function (perhaps vanishing at isolated points) that weights
each point p in M with a certain mass f(p). Given a region Ω ⊂ M with piecewise
smooth boundary, the weighted volume (or area) and boundary measure or perimeter
of Ω are given by

V (Ω) =

∫
Ω

f dV0 and P (Ω) =

∫
∂Ω

f dP0 ,

where dV0 and dP0 denote Euclidean volume and perimeter. We may also refer to the
perimeter of Ω as the perimeter of its boundary.

Definition 2 (Isoperimetric Region). A region Ω ⊂ M is isoperimetric if it has the small-
est weighted perimeter of all regions with the same weighted volume. The boundary
of an isoperimetric region is also called isoperimetric.

We can generalize the idea of an isoperimetric region by considering two or more
volumes.

Definition 3 (Isoperimetric Cluster). An isoperimetric cluster is a set of disjoint open
regions Ωi of volume Vi such that the perimeter of the union of the boundaries is mini-
mized.

For example, in the plane with density 1, optimal clusters are known for one area,
two areas (Foisy et al. [6]), three areas (Wichiramala [14]), and four equal areas (Paolini
and Tortorelli [10]), as in Figure 1. Note that for density rp, scalings of minimizers are
minimizers, because scaling up by a factor of λ scales perimeter by λp+1 and area by
λp+2.

The following proposition summarizes existence, boundedness and regularity of
isoperimetric clusters in Rn with density, proved by Hirsch et al. [7] following such
results for single bubbles (Rosales et al. [12, Thm. 2.5]) and Morgan and Pratelli [9,
Thm. 5.9]).

Proposition 4 (Existence, Boundedness and Regularity). Consider Rn with radial non-
decreasing C1 density f such that f(r) → ∞ as r → ∞. An isoperimetric cluster that encloses
and separates given volumes exists (Hirsch et al. [7, Thm. 2.5]) and is bounded (Hirsch et al. [7,
Prop. 2.6]). In R2, the cluster consists of smooth curves with constant generalized curvature
meeting in threes at 120◦ except possibly at points where the density vanishes (Hirsch et al. [7,
Thm. 2.8]). The C1 hypothesis may be allowed to fail, for instance at isolated points.

Note that, unlike Hirsch et al. [7], by definition we allow a density to vanish at
isolated points.
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Definition 5 (Generalized Curvature). In R2 with density f , the generalized curvature
κf of a curve with inward-pointing unit normal N is given by the formula

κf = κ0 −
∂ log f

∂N
,

where κ0 is the (unweighted) geodesic curvature. This comes from the first variation
formula, so that generalized curvature has the interpretation as minus the perimeter
cost dP/dA of moving area across the curve, and constant generalized mean curvature
is the equilibrium condition dP = 0 if dA = 0 (see [12, Sect. 3]).

Remark 6. In R2 with density rp, a circular arc has constant generalized curvature if
and only if the circle passes through the origin [7, Rem. 2.9].

3 Multiple Bubbles in R2 with density rp

With Brakke’s Evolver [2], Proposition 7 supports the conjecture of Hirsch et al. [7] that
the optimal double bubble in the plane with density rp is the standard double bubble.
Proposition 8 provides a conjecture on the form of the triple bubble, and Proposition 10
provides a conjecture on the form of the quadruple bubble.

Proposition 7 (Double Bubble). Computations on Brakke’s Evolver [2] support the conjec-
ture [7] that the optimal planar double bubble for density rp consists of a standard double bubble
with one vertex at the origin, as shown in Figure 2.

(a) Equal areas (b) Areas 10 and 1000 (c) Areas 1 and 1000

Figure 2: Computations in Brakke’s Evolver [2] in R2 with density r2 support the con-
jecture that the optimal double bubble is the standard double bubble with one vertex
at the origin (marked here by a plus). Densities r5, r3 and r0.5 are apparently identical.

Proposition 8 (Triple Bubble). Computations with Brakke’s Evolver [2] indicate that the
optimal triple bubble in the plane with density rp consists of three circular arcs meeting at the
origin, one shrinking as p increases, separating the bubbles from each other, and three constant-
generalized-curvature curves (see Remark 6), separating the bubbles from the exterior, as in
Figure 3 and Figure 4.
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(a) Equal areas of 10 (b) Areas 0.1, 100 and 100 (c) Areas 1, 1 and 0.1

(d) Areas 0.1, 0.1 and 1 (grey), 0.1, 0.1 and
5 (green), 0.1, 0.1 and 20 (blue) and 0.1, 0.1
and 100 (red) overlayed

(e) Overlay zoomed in on the origin

(f) Overlay zoomed in fur-
ther reveals small edges

(g) Volumes 0.1, 0.5 and 100 (h) Zoomed in on the origin

Figure 3: Computations in Brakke’s Evolver in R2 with density r2 suggest that the
optimal planar triple bubble consists of three circular arcs meeting at the origin and
three nearly circular arcs meeting near the origin. Areas are labelled clockwise starting
at the upper left bubble. Densities r3, r4, r5, r6 and r7 are apparently similar.
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(a) A triple bubble with equal areas for p = 1.7 (b) A triple bubble with equal areas for p = 1.9

Figure 4: As p increases from 0, one edge gets shorter, moving a second vertex near the
origin.

Proposition 9. Our conjectured triple bubble of Proposition 8 has less perimeter than three
bubbles in a linear chain, as in Figure 5. The linear chain evolves toward our conjectured triple
bubble as in Figure 6.

(a) Our conjectured triple bubble with equal
volumes of 10 has perimeter just over 63

(b) A linear chain with equal volumes of 10 has
perimeter just over 66

Figure 5: Our conjectured triple bubble has less perimeter than a linear chain in the
plane with density r2. Densities r0.5 and r3 are apparently similar.
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Figure 6: A linear chain, after slight displacement upwards, evolves as far as possible
(without changing its topological type) toward our conjectured triple bubble, here in
the plane with density r2. Densities r3 and r4 are apparently identical.

Proposition 10 (Quadruple Bubble). Computations with Brakke’s Evolver [2] indicate that,
for the optimal quadruple bubble in the plane with density rp, as p increases from 0 (the standard
Euclidean quadruple bubble as in Figure 1), the central edge with one endpoint at the origin
shrinks as in Figure 7 until it disappears when p reaches 1, after which four circular arcs meet
at the origin (where the density vanishes) as in Figure 8.

For example, in the plane with density rp for p ≥ 1 our conjectured quadruple
bubble of Proposition 10 has less perimeter than the Euclidean quadruple bubble, as in
Figure 9.
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(a) A quadruple bubble with equal areas for p = 0.3

(b) A quadruple bubble with equal areas for
p = 0.99

(c) The same quadruple bubble as Figure 7b
zoomed in on the origin reveals a small edge

Figure 7: Computations in Brakke’s Evolver [2] in R2 with density rp for p < 1 suggest
that the optimal planar quadruple bubble has a short central edge with one endpoint
at the origin, shrinking as p increases toward 1.
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(a) Equal areas of 3 show
a symmetry absent in the
Euclidean case (1)

(b) Areas of 0.1, 0.1, 0.1 and 10 (c) Areas of 1, 0.1, 30 and 50

(d) Areas of 1, 2, 4 and 3 (e) Areas of 4, 7, 3 and 2 (f) Areas of 20, 20, 20 and 1

(g) Areas of 30, 30, 1 and 1,
with total perimeter just
under 104

(h) An inferior version of
Figure 8g with areas of 30, 1,
30 and 1, with total perimeter
just over 106

(i) Areas of 50, 3, 1 and 2

Figure 8: For p ≥ 1, the central edge has collapsed and four circular arcs meet at the
origin. The areas are labelled clockwise, starting from the top bubble. Densities r3

and r4 are apparently identical.
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(a) The standard Euclidean quadruple bub-
ble with unit Euclidean areas, centered at the
origin in the plane with density r2, has ar-
eas around 0.5, 0.8, 0.5 and 0.8 and perimeter
around 10.86 .

(b) Our conjectured quadruple bubble with
the same areas in the plane with density r2

has perimeter around 10.81 .

Figure 9: With the same areas in the plane with density r2, our conjectured quadruple
bubble has less perimeter than the standard Euclidean quadruple bubble.

Proposition 11. Computations indicate that the optimal Euclidean quadruple bubble has the
two largest areas on opposite sides of the central edge. As p increases towards 1, it prefers the
largest and smallest bubbles on opposite ends of the central edge. Once the central edge has
disappeared, for p ≥ 1, the largest and smallest bubbles remain opposite. See Figure 10.

This arrangement of unequal areas is apparently a new conjecture even for the Eu-
clidean case. It indicates that that the Euclidean quadruple bubble never has convex
regions, so the results of [5] never apply. It is known to be true for small deformations
of the equal-areas minimizer because it saves perimeter to shrink convex regions and
expand nonconvex regions.
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(a) The optimal Euclidean quadruple bubble apparently has the two largest regions on opposite
sides of the central edge.

(b) As p increases towards 1, the optimal
quadruple bubble has the largest and smallest
regions on opposite ends of the central edge.

(c) Once the central edge has disappeared, for
p ≥ 1, the largest and smallest bubbles remain
opposite.

Figure 10: Optimal quadruple bubble orderings for different values of p.

Proposition 12. Computations indicate that when a central edge is present, our conjectured
quadruple bubble of Proposition 10 is most effective with the vertex of the larger bubbles on the
origin, as in Figure 11.

This is the opposite of the R1 case where the vertex of the smallest bubbles is on the
origin (Ross [13, Thm. 1]). In R2, larger bubbles require more perimeter, so it makes
sense to have them closer to the origin.
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(a) Our conjectured quadruple bubble with the
vertex of the larger bubbles on the origin has
perimeter around 17.67 .

(b) The quadruple bubble with the vertex of
the smallest bubble on the origin has perime-
ter around 17.70 .

Figure 11: Our conjectured quadruple bubble has the vertex of the larger bubbles on
the origin (here for density r0.1).
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