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The length of the path of a ray in a square
Onur Kaan Genc1

1 Introduction

This article is about an example of “mathematical billiards”, a subject which deals with
a particle moving freely through a bounded two-dimensional region, and following
the physical principle of reflection: whenever the particle reaches the boundary of the
region, it bounces back with the angle of reflection equal to the angle of incidence; see
Figure 1.
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Figure 1: A particle reflecting off a line with the angle of incidence equal to the angle
of reflection.

Such a system can be thought of as modelling the behaviour of a ray of light, or as
an idealised version of the behaviour of a billiard ball, ignoring other physical forces
on the ball like friction or air resistance. For a general introduction to this theory, see
for example [1].

In this article, we consider a square region, with a ray of light emanating from a
corner of the square. The angle of reflection is well defined when the ray hits a side
of the square, but not when it hits a corner, so we will consider the path to be finished
if/when the ray hits a corner.

The length of the ray’s path is our main focus. The length of the path may be
infinite, or the path may terminate at a corner. Which of these two scenarios occurs
depends on the initial angles the ray makes with the sides of the square. In this study,
we determine the condition for the ray’s route to be finite, and compute its length in
this case.

2 Method

Since this is a problem relating to the geometry of a square, it suffices to consider the
unit square in the Cartesian plane: the set of points (x, y) satisfying 0 ≤ x, y ≤ 1.
Without loss of generality, we further assume that the ray emanates from the origin at
an angle θ of less than or equal to π

4
with the x-axis; otherwise, the ray would make an

angle of less than or equal to π
4

with the y-axis.
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2.1 The first trip up

If the angle θ is exactlyπ
4
, then the ray simply goes to the point (1, 1) and terminates.

Otherwise, the ray will hit the right side of the square at the point (1, tan θ) and reflect
back towards the left. At this point, there are three possibilities. If 2 tan θ is less than 1,
then the ray will hit the left side of the square at the point (0, 2 tan θ) and then reflect
back towards the right. On other hand, if 2 tan θ is larger than 1, then the ray will hit
the top of the square before reaching the left hand side and reflect downwards. Finally,
if 2 tan θ = 1, then the ray will hit the upper left corner of the square and terminate; see
Figure 2.
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Figure 2: In the first picture, tan θ = .45, and the ray hits each side of the square once
before reaching the top and reflecting back down. In the second picture, tan θ = 0.7
and the ray hits the right side once before hitting the top and reflecting back down. In
the third picture, tan θ = 0.5 and the ray hits the right side before hitting the upper left
corner and terminating.

More generally, the ray will hit the sides of the square n times on the way up, where
n is the largest integer such that n tan θ ≤ 1. We can express n using the floor function
as n = ⌊ 1

tan θ
⌋ = ⌊cot θ⌋, where ⌊x⌋ means the greatest integer that is less than or equal

to x. We will also want to use the ceiling function ⌈x⌉, which means the smallest integer
that is greater than or equal to x.

We can think of these ⌊cot θ⌋ first legs of the path as each being the hypotenuses of
a right triangles with base 1 and height tan θ. We call such triangles unit right triangles.
The last leg of the triangle, assuming the ray does not terminate at one of the top
corners (which happens precisely when cot(θ) is an integer) will be the hypotenuse of
a similar right triangle, but with height 1 − ⌊cot θ⌋ tan θ. We can compute the base of
this right triangle using its similarity with the unit right triangles as

1− ⌊cot θ⌋ tan θ
tan θ

= cot θ − ⌊cot θ⌋ .

We call such a triangle a proportional right triangle; see Figure 3.
Suppose that cot θ is not an integer, so that the ray hits the top of the square not

in a corner, and reflects back down. By the reflection principle, this will again be the
hypotenuse of a proportional right triangle, this time with base

1−
(
cot θ − ⌊cot θ⌋

)
= ⌈cot θ⌉ − cot θ .
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Figure 3: In this picture, the ray hits the sides twice before hitting the top. Therefore,
⌊cot θ⌋ = 2, and the path determines two unit right triangles and a smaller proportional
right triangle. The proportional right triangle has height 1− 2 tan θ and base cot θ − 2.

We can again compute the height of this right triangle using its similarity with a unit
right triangle as (

⌈cot θ⌉ − cot θ
)
tan θ = ⌈cot θ⌉ tan θ − 1 .

A key observation here is that if we add the heights of the two proportional right
triangles formed by the last leg before hitting the top of the square and from the first
leg after reflecting back down, we get(

1− ⌊cot θ⌋ tan θ
)
+
(
⌈cot θ⌉ tan θ − 1

)
=

(
⌈cot θ⌉ − ⌊cot θ⌋

)
tan θ = tan θ .

which is the height of a unit right triangle. This should not be surprising, since these
two triangles can be thought of as coming from a single unit right triangle “folded
down” at the top of the square; see Figure 4.
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Figure 4: The yellow proportional right triangle on the upper left has height 1− 2 tan θ
and base 2 − cot θ. The yellow proportional right triangle on the upper right has base
cot θ− 1 and height 3 tan θ− 1. The sum of the two triangles’s heights is tan θ, which is
also the height of a unit right triangle, and also their common ratio of height to base.
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2.2 The path back down

We continue with our assumption that cot θ is not an integer, so that the ray hits the
top of the square not in a corner. The ray will then continue bouncing off the sides of
the square on the way down, forming (hypotenuses of) unit right triangles with each
leg, until it either reaches a bottom corner, or reaches a point on a side of the square
which is less than tan θ from the bottom. In the latter case, it will make a smaller
proportional right triangle with the last leg, hit the bottom of the square, and make
another proportional right triangle on the next leg back up. By the same argument as
above, the heights of these two proportional right triangles will add up to tan θ, the
height of a unit right triangle.

2.3 Conclusion

These observations imply the following theorem and corollary.

Theorem 1. The ray hits the sides of the square each time the total vertical distance travelled
increases by tan θ.

Proof. The preceding analysis shows that the ray hits the side of the square each time
it forms the hypotenuse of a unit right triangle, which has height tan θ; and each time
it forms hypotenuses of two proportional right triangles from reflecting off the top or
bottom of the square, the sum of whose heights is again tan θ. 2

Corollary 2. The ray will reach a corner of the square if and only if tan θ is a rational number.
In this case, let tan θ = m

n
where m and n are relatively prime positive integers. Then the total

length of the path of the ray is n sec θ.

Proof. The ray will hit a corner if it hits a side of the square at a point when the total
vertical distance travelled is a positive integer. By the above theorem, this will happen
at the first positive integer which is a multiple of tan θ, which exists if and only if tan θ
is rational. Let tan θ = m

n
where m and n are relatively prime positive integers. Then

the vertical distance travelled before the ray hits a corner is n. Since each leg of the
path is the hypotenuse of a right triangle which makes an angle of θ with its base, the
vertical distance travelled is cos θ times the total distance travelled, so that the total
distance is sec θ times the vertical distance. 2
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3 Another perspective: unfolding

There is another interesting way of looking at this problem. Instead of imagining the
ray reflecting off the sides of a square, imagine that the ray continues in a straight line
making an angle of θ with the x-axis, but that we “unfold” a copy of the square in the
direction of travel of the ray at each point that the ray reaches a side of the square; see
Figure 5.
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Figure 5: On the left is a ray in the square, with tan θ = 2
3
. There are four segments to

the path: first, the ray hits the right side, then the top, then the left side, then terminates
in the lower right corner. On the right is the same path “unfolded” in the plane. The
four squares correspond to the four path segments, and the termination point (3, 2)
corresponds to the lower left corner of the original square.

From this perspective, we can see that the condition that the ray eventually reaches
a corner in the original setup is equivalent to the condition that the ray with slope
tan θ emanating from the origin in the plane eventually crosses a point with integer
coordinates. This happens precisely if tan θ is rational, and the first such point crossed
is (n,m), where m

n
is the reduced form of tan θ. The length of the path in the original

setup is just the length of the vector (n,m) in R2, which
√
n2 +m2. This agrees with

our previous answer: if tan θ = m
n

, then n sec θ = n
√
n2+m2

n
=

√
n2 +m2; see Figure 6.
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Figure 6: A right triangle with base n and height m, with the hypotenuse making an
angle of θ with the base. We have sec θ =

√
n2+m2

n
.
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More generally, we can also consider the path of a ray in a rectangle whose ratio of
height to base is rational. Without loss of generality, suppose the base of the rectangle
is 1 and the height is a positive rational number a, which we consider in the Cartesian
plane as the set of points (x, y) satisfying 0 ≤ x ≤ 1, 0 ≤ y ≤ a. As before, we assume
the ray emanates from the origin making an acute angle θ with the positive x-axis.
Then a similar unfolding argument shows that the unfolded path will terminate at the
first point (x, y) such that x is an integer and y is an integer multiple of a. Since for any
point on the path we have y

x
= tan θ, this condition is equivalent to x and x tan θ

a
both

being integers. In particular, such an x exists if and only if tan θ is rational, in which
case the smallest such x is the denominator of the rational number tan θ

a
when expressed

as a ratio of two relatively prime positive integers. The length of the path will then be√
x2 + y2 = x sec θ .

For more on unfolding, see [1].

4 Conclusion

In this study, we have seen that the length of the path of a ray in a square which is
subject to the reflection principle will be finite if and only if the initial angle it makes
with a side of the square has rational tangent. In this case, we can compute the length
of the path in terms of this angle.
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