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Back to Babylonian roots
Frédéric Beatrix1

1 Introduction to Babylonian maths

Nestled on a fertile plain between the banks of the Euphrates and Tigris rivers, Babylon
emerges as a radiant jewel in the tapestry of ancient Mesopotamia2. Our journey begins
in the 2nd millennium BCE, where the city’s roots intertwine with the dawn of written
civilisation.

As the centuries unfold, Babylon ascends from a provincial town to a majestic city-
state, ruled by influential leaders like Hammurabi, whose Code stands as a testament
to early legal systems. The Hanging Gardens3, a verdant marvel, bloom as a symbol
of artistic and engineering prowess. The city’s architectural excellence reaches its
zenith under the reign of Nebuchadnezzar II. The Ishtar Gate4, adorned with mythical
creatures, stands as a portal to Babylon’s opulence. Nebuchadnezzar’s ambitious pro-
jects, including the grand ziggurat Etemenanki5, reflect the city’s desire to touch the
heavens. Babylon extends its influence across the region, forming the Babylonian
Empire. The city becomes a melting pot of cultures, fostering trade, intellectual ex-
change and the flourishing of the arts and sciences.

Amidst the splendour of Babylon, a beacon of intellectual brilliance emerged, as the
city-state delved into the realms of science and mathematics. The mathematicians used
9 digits and calculated using a sexagesimal system, a system that was already used by
ancient Sumerians in the 3rd millennium BC. Sexagesimal means that the numerical
base is 60, so that all positive integers are expressed as sums of powers of 60 multiplied
by coefficients which are positive integers less than 60.6 We can think of the calculations
in sexagesimal as calculating time with 60 seconds in a minute and 60 minutes in the
hour. That is the reason why I will adopt the presentation of the type n60 = a′′b′c◦ for a
number n in base 60 for its equivalent n10 = a602 + b60 + c in base 10.

1Frédéric Beatrix runs his own architectural firm blue.archi in Villefranche-Sur-Mer, France.
2Mesopotamia is a word that comes from the greek word “mesos", which means “in the middle", and

“potamos" which means “rivers". It is in modern-day Iraq.
3One of the Seven Wonders of the Ancient World.
4Ishtar is the goddess of love, war, and fertility.
5The name means “temple of the foundation of heaven and earth". It was a ziggurat dedicated to

the Mesopotamian god Marduk in the ancient city of Babylon. It now exists only in ruins, located about
90 kilometres (56 mi) south of Baghdad, Iraq. Many scholars have identified Etemenanki as a likely
inspiration for the biblical story of the Tower of Babel.

6We still use this system - in a modified form - for measuring time, angles and geographic
coordinates.
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This system is ideal for fractions, and for keeping accounts of harvests, since the
number 60 is a superior highly composite number with twelve factors7 of which 2, 3
and 5 are prime numbers. Furthermore, it is the least common multiple of 1, 2, 3, 4, 5
and 6.

There is recorded evidence that, in 1800 BCE, the Babylonian mathematicians could
calculate Pythagorean triples – more than a thousand years before Pythagoras. The
oldest known record comes from the Babylonian clay tablet Plimpton 322 [2]. This
means that the Babylonians had expertise in multiplying and calculating squares of
sexagesimal numbers.

Figure 1: Babylonian clay tablet showing Pythagorean triples. 1800 BCE

Is it possible that this ability also allowed Babylonian mathematicians to calculate
approximate values for square roots? Indeed, the YBC7289 clay tablet [1] illustrated
in Figure 28, likely to be the work of a student between 1800BCE and 1600BCE, shows
such an approximation:

√
2 ≈ 1 +

24

60
+

51

602
+

10

603
.

There have been several conjectures about how this student obtained this result.
Most conjectures are in favour of a geometric approach [3, 4] which could possibly
be similar to the method used by Archimedes to obtain the approximation of π in his
treatise “Dimension of the Circle" (ca. 250 BCE), or similar to the method of Hero of
Alexandria (1st century CE) [5]. Others have suggested techniques of division and
averaging [6]. I believe this geometric approach derives from an influence of our Greek
architectural heritage.

7Namely 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.
8At Yale, the Institute for the Preservation of Cultural Heritage has produced a digital model of the

tablet, suitable for 3D printing; see [7].
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Figure 2: Babylonian clay tablet showing the approximation of
√
2. 1800 BCE

In this paper, I intend to argue in favour of a simple and efficient calculation.
Indeed, the ability to calculate squares in the sexagesimal system seems very sufficient
to quickly get the expected result. Though of course there is no evidence for how
the calculation was done, and so this paper must be considered only as a credible
conjecture.

We will attempt to multiply like a Babylonian student using an anachronistic multi-
plication array. Then, in three easy steps, we will converge towards the beautiful
sexagesimal approximation.

However, I feel that it is important to first write down the following disclaimer.
When studying mathematics from Antiquity, we should be careful to:

Avoid reading into early mathematics ideas which we can see clearly today
yet which may never have been in the mind of the authors.

Never underestimate the significance of the mathematics just because it was
produced by mathematicians who thought very differently from today’s
mathematicians.

Realise that a great quantity of the mathematical achievements of ancient times,
even if a great quantity were recorded on clay tablets or papyrus, may well have
been lost.
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Figure 3: Babylonian clay tablet showing precalculated squares. 1800 BCE

2 How to multiply like a Babylonian

The Babylonians used precalculated tables to assist with arithmetic. For example, two
tablets found at Senkerah on the Euphrates in 1854, dating from 2000 BC, give lists of
the squares of numbers up to 59; see Figure 3.

02→ 92 0′0◦ 0′1◦ 0′4◦ 0′9◦ 0′16◦ 0′25◦ 0′36◦ 0′49◦ 1′4◦ 1′21◦

102→ 192 1′40◦ 2′1◦ 2′24◦ 2′49◦ 3′16◦ 3′45◦ 4′16◦ 4′49◦ 5′24◦ 6′1◦

202→ 292 6′40◦ 7′21◦ 8′4◦ 8′49◦ 9′36◦ 10′25◦ 11′16◦ 12′9◦ 13′4◦ 14′1◦

302→ 392 15′0◦ 16′1◦ 17′4◦ 18′9◦ 19′16◦ 20′25◦ 21′36◦ 22′49◦ 24′4◦ 25′21◦

402→ 492 26′40◦ 28′1◦ 29′24◦ 30′49◦ 32′16◦ 33′45◦ 35′16◦ 36′49◦ 38′24◦ 40′1◦

502→ 592 41′40◦ 43′21◦ 45′4◦ 46′49◦ 48′36◦ 50′25◦ 52′16◦ 54′9◦ 56′4◦ 58′1◦

As you can see in this table, the squares in the the columns are arranged in neat
sequences, and the memorisation of it seems pretty accessible. With this simple tool the
Babylonians easily multiplied numbers, without the need for a mind-boggling 60× 60
multiplication table, using this simple formula:

ab =
1

2

(
a2 + b2 − (a− b)2

)
.

For example,

51◦ × 25◦ =
1

2

(
(51◦)2 + (25◦)2 − (26◦)2

)
=

1

2

(
43′21◦ + 10′25◦ − 11′16◦

)
=

42′30◦

2
= 21′15◦.
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3 Easy multiplication array

To assist with calculations in the following section, I will first describe in this section
an algorithm to carry out large multiplications in base 609. It is a version of what
is sometimes called lattice multiplication or tableau multiplication, and has appeared in
various forms in many different cultures and civilizations, including China, India, the
Arab world and Europe. See [8] for a brief survey.

The purpose of this method is first to increase speed and lower the risk of mistakes10

and second to maintain the possibility of increasing the size of the multipliers while
keeping the same presentation.
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Figure 4: Easy multiplication array

For example, let’s calculate
1′25◦ × 10′51◦ .

The basic principle is to consider the multipliers as lengths and the result as a calculated
area. Two multipliers composed respectively of n and m figures will generate a multi-
plication array of n × m interim multiplication results as illustrated in Figure 4. The
interim results can be calculated in any order and there are no “carries" at this stage.

We complete the multiplication array in any order. When it is complete, we proceed
to the additions of each column, in a traditional fashion, from right to left. When the
sum of a column has the form x60 + y, we write down y and we carry x to the next
column left.

In this example, the result of the multiplication is

1′25◦ × 10′51◦ = 15′′22′15◦ ,

or, in base 10,
85× 651 = 55 335 .

9The algorithm actually works in any base system, as illustrated in Figure 11.
10I had the chance to test it with 8-year-old kids - in base 10 - and it does increase speed and drastically

reduces the risk of mistakes for large multiplications. I welcome feedback from school teachers.
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Now suppose we choose to increase the multiplier 10′51◦, for example multiplying
it by 60 and adding 41◦. How do we proceed? We simply tuck 41◦ on the end to get
10”51′41◦. We then add its multiplication with very few simple steps, as illustrated in
Figure 5.
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Figure 5: Increasing one of the multipliers leads to a larger array, with the new pieces in red.

The result of the multiplication is

1′25◦ × 10′′51′41◦ = 15′′′23′′13′5◦ ,

which is simple and lean in sexagesimal and a bit more impressive in decimal:

85× 39 101 = 3 323 585 .

4 Let’s calculate an approximation of
√
2

In this section, we will try to approximate
√
2 using sexagesimal integer arithmetic.

First, let’s obtain a rough approximation. Note that for any square, the ratio of the
length of a diagonal to the length of a side is equal to the square root of 2. So we start
by drawing a square of side 1′0◦ (which is 60 in base 10) and measuring the length of
the diagonal d. We find that d is between 1′24◦ and 1′25◦ (respectively 84 and 85 in base
10); see Figure 6. Therefore, the square root of 2 is in between

84

60
and

85

60
.

Now imagine that we could zoom in and divide our units into 60 pieces each.
Then, subject to our measuring capabilities, we could tighten the upper and lower
bounds. We could then recursively iterate this process to obtain increasingly sharp
approximations to the square root of 2.
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1′0◦ ≈ 0′24◦

Figure 6: The diagonal of a square with side length 1′0◦ = 60 has length approximately
1′24◦ = 84.

I am not asking you to get out a magnifying glass just yet. Instead, the plan is to
replicate this geometric process with an arithmetic tool that we know the Babylonians
had at their disposal: the ability to multiply sexagesimal numbers.

We can verify by direct multiplication that

(1′24◦)2 < 2′′0′0◦ < (1′25◦)2 .

We will concentrate on the lower bound, which we may interpret, after dividing by
602, as giving the approximation

√
2 ≈ 1 +

24

60
.

To extend this approximation by another sexagesimal digit, we would like to find the
largest integer x such that

1 +
24

60
+

x

602
<

√
2 .

We can express this inequality in terms of integer multiplication by writing(
1 +

24

60
+

x

602

)2

< 2

and then multiplying by 604 to get(
602 + 24 · 60 + x

)2
< 2 · 604 .

Expanding the square, we may further rewrite the inequality as

(602 + 24 · 60)2 + x2 + 2x · (602 + 24 · 60) < 2 · 604 ,

or, in other words, as

x =
2 · 603 − (60 + 24)2 · 60

2 · (60 + 24)
− x2

2 · 60 · (60 + 24)
,
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where we have cancelled a factor of 60 in the first summand.
In sexagesimal notation, this inequality takes the form

x <
2′′′ − (1′24◦)2 · 1′

2◦ · 1′24◦
− x2

2′ · 1′24◦
=

2′′24′

2′48◦
− x2

2′′48′
,

where we have used the multiplication calculation (1′24◦)2 = 1′′57′36◦; see Figure 7.
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Figure 7: Approximation of
√
2 - Step 1

Although we are dealing with a quadratic inequality, we are searching for an integer
x between 0 and 59, and so the quadratic term is relatively small:

x2

2′′48′
<

602

2 · 602 + 48 · 60
=

5

14
.

Therefore, if we simply ignore the quadratic term and take

x0 =

⌊
2′′24′

2′48◦

⌋
=

⌊
8640

168

⌋
=

⌊
360

7

⌋
= 51 ,

then we are guaranteed that x0 is within short distance to one of the largest possible
integers satisfying the original inequality. More precisely, either x will satisfy the
inequality, in which case x is the largest such integer; or x will not satisfy the inequality,
in which case x − 1 must be the largest integer to satisfy the inequality. In particular,
since the fractional part of 360

7
, which is 3

7
, is greater than the bound on the quadratic

term of 5
14

, we can see that x0 satisfies the inequality. Therefore,

1 +
24

60
+

51

602

is the best lower approximation of
√
2 to two sexagesimal places, and we are done.
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To add another sexagesimal digit to the approximation, we similarly search for the
largest integer y such that (

1 +
24

60
+

51

602
+

y

603

)2

< 2 ,

which we again rearrange as

y <
2 · 605 − (602 + 24 · 60 + 51)2 · 60

2 · (602 + 24 · 60 + 51)
− y2

2 · 60 · (602 + 24 · 60 + 51)
,

or in sexagesimal notation

y <
2′′′′′ − (1′′24′51◦)2 · 1′

2◦ · 1′′24′51◦
− y2

2′ · 1′′24′51◦
.

Again the quadratic term is very small:

y2

2′ · 1′′24′51◦
<

602

2 · 60 · (602 + 24 · 60 + 51)
=

10

1697
≈ 0.006 .

So we concentrate on the first term and set

y0 =

⌊
2′′′′′ − (1′′24′51◦)2 · 1′

2◦ · 1′′24′51◦

⌋
=

⌊
2′′′′′ − 1′′′′′59′′′′59′′′31′′21′

2′′49′42◦

⌋
=

⌊
28′′39′

2′′49′42◦

⌋
=

⌊
102540

10182

⌋
= 10 ,

where we have used the multiplication calculation (1′′24′51◦)2 = 1′′′′59′′′59′′31′21◦; see
Figure 8.
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Again, the fractional part of 17090
1697

, which is 120
1697

, is greater than the bound of 10
1697

on
the quadratic term of the inequality, so y0 satisfies the inequality. Therefore,

1 +
24

60
+

51

602
+

10

603

is the best lower approximation of
√
2 to three sexagesimal places.

Another way of looking at the method above is as follows. Consider a square with
sides u and area u2, and a slightly larger square with sides v = u + h and area v2 =
(u+ h)2. We have the first order approximation

v2 = (u+ h)2 = u2 + 2uh+ h2 ≈ u2 + 2uh ,

assuming that h is very small. Therefore, we can approximate the increment h in the
side of a square needed to increase its area from u2 to v2 by

h ≈ v2 − u2

2u
;

see Figure 9.

u

h

Figure 9: A square of size u is shown inside a square of size v = u + h. The difference
in areas of the the two large squares is the sum of the areas of the three shaded rectangles:
v2 − u2 = 2uh + h2. If h is small relative to u, then we may disregard the green square with
the small area h2 and approximate the difference in areas of the large squares as the sum of the
areas of the yellow rectangles: v2 − u2 ≈ 2uh.

This is exactly the calculation we have done above (twice), with v2 = 2 and u a
starting approximation for

√
2. After truncating h appropriately using a floor function,

we then end up with a better approximation for
√
2. For example, starting with v2 = 2

and u = 1 + 24
60

, we have

h = v − u ≈ v2 − u2

2u
=

1

70
,

which is between 51
602

and 52
602

; we truncated to 51
3600

for a lower approximation.
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The approximate ratio that we are using in these calculations for the difference in
area v2 − u2 and the difference in side length h is 2u, which from the perspective of
calculus is the first derivative of the squaring function evaluated at u. More precisely,
we are approximating the difference h in the square root function in terms of the
difference of two squares v2 − u2, so we multiply v2 − u2 by 1

2u
, which is the first

derivative of the square root function evaluated at u2.
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Figure 10: Approximation of
√
2 and of

√
2
2

correct to 6 decimal digits

The three-place sexagesimal approximation of the
√
2

1 +
24

60
+

51

602
+

10

603
= 1.41421296296 . . .

is accurate to six decimal places. It is credible that the Babylonian mathematicians
worked out this very accurate approximation with the sole ability to multiply and
divide integers, which they did in base 60. This is a hypothesis which is strongly
supported by the archaeological artefacts.

The YBC7289 tablet (Figure 2) also gives an example where one side of the square
is half the original, i.e., 30◦, and the length of the diagonal is approximately 42′′25′35◦;
see Figure 10. This gives us the elegant approximation

√
2

2
≈ 42

60
+

25

602
+

35

603
,

which may be obtained by halving the approximation for
√
2 above.
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Figure 11: Examples of the multiplication array in various base systems
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