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Partial coverings and conditions for Sierpiński candidates
Jack W. Leventhal1

1 Introduction

In 1958, Raphael M. Robinson [1] found primes of the form k ·2n+1 for all odd integers
1 < k < 100 and 0 < n < 512, with the exception of k = 47. Soon after, Polish mathe-
matician Wacław Sierpiński [2] proved that there exist infinitely many odd integers k
such that numbers of the form k · 2n + 1 are never prime for any integer n. The values
of k with this property have been termed Sierpiński numbers.

With the inception of these numbers, Sierpiński set into motion the search to find
the least possible value for k, known as the Sierpiński Problem. In 1962, John Selfridge
showed that no matter the value of n, the number 78557 · 2n + 1 is always composite,
hence proving that k = 78557 is a Sierpiński number. It is still conjectured today to
be the smallest Sierpiński number. Assuming that this is true, 271129 is hypothesized
to be the second smallest Sierpiński number, a search known as the Extended Sierpiński
Problem. According to PrimeGrid [5], a program working to solve the aforementioned
Sierpiński problems, there are five candidates left in the Sierpiński problem:

21181 , 22699 , 24737 , 55459 and 67607 .

The Extended Sierpiński Problem has eight possible candidate solutions:

91549 , 131179 , 163187 , 200749 , 209611 , 227723 , 229673 and 238411 .

Any prime value of k · 2n + 1, for any k, would eliminate k as a candidate.
This paper introduces a new methodology to find necessary conditions for a prime

counterexample, alleviating the search for them, and therefore eases the process of
eliminating candidates in the Sierpiński problems.

2 Definitions and procedure

The process for generating restrictions for Sierpiński candidates allows us to greatly
reduce the work necessary to solve the Sierpiński problems. Wolfram Alpha [4] will
prove useful for computations. First and foremost, we introduce the notions of residue
classes and covering systems and sets — covering systems having first been introduced
by Paul Erdős [3] in 1950. Calculations for these concepts will be provided following
their introduction.

1Jack W. Leventhal is a senior at Wilton High School, CT, USA.
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Definition 1. A residue class a(mod m) is the set of integers with the same remainder
as a when divided by the modulus m.

For instance, all even numbers are members of the residue class 0(mod 2), as they
all leave a remainder of zero when divided by the modulus, here 2. Residue classes
like this will act as the building blocks for covering systems.

Definition 2. A partial covering system is a set of residue classes

{ c1 (mod m1) , . . . , cj (mod mj) } .

Definition 3. A covering system is a partial covering system whose union of residue
classes contains every integer.

Covering systems are closely tied to covering sets, both of which will be employed
to further narrow the search for counterexamples and remove Sierpiński candidates
from their respective problems.

Definition 4. Given Sierpiński candidate k, define the covering set Sk to be the smallest
set of prime numbers such that, for each non-negative integer n, k · 2n + 1 is divisible
by at least one prime in Sk.

For the remaining Sierpiński candidates, partial covering systems (and their accom-
panying covering sets) will be utilized.

Definition 5. For Sierpiński candidate k, let Pk be the smallest set of prime numbers
such that, for all non-negative integers r ≤ n, the number k · 2r + 1 is divisible by at
least one prime in Pk.

Now, we will construct certain partial covering systems and sets. First, choose an
arbitrary prime p and find the smallest positive integer m such that 2m ≡ 1(mod p); it
is not difficult to show that such an integer will always exist.

Next, for a selected Sierpiński candidate k and the chosen prime p, we can calculate
the portion of the partial covering system yielded by p as follows. Solving the congru-
ence k · 2n + 1 ≡ 0(mod p) for n yields a congruence of the form n ≡ xp (mod p), with
xp being the principal value which satisfies the congruence. These solutions allow one
to discover which values of n are divisible by p due to the fact that, if k · 2xp + 1 ≡ 0
(mod p), then the following holds true:

k · 2xp+mx + 1 ≡ k · 2xp(2m)x + 1 ≡ k · 2xp1x + 1 ≡ k · 2xp + 1 ≡ 0 (mod p) .

In other words, if n ≡ xp (mod p) is satisfied, then adding multiples of p, or mp, to the
exponent will still cause n to be divisible by p.

This process for constructing a covering system and set can be exemplified by the
Sierpiński number 78557. While it has a covering system rather than a partial covering
system, the same process is applicable and begins as follows.

Starting with the smallest odd prime 3, we find the smallest positive integer m such
that 2m ≡ 1(mod 3). This happens to be 2. Thus, the modulus for the residue class
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produced by 3 is m = 2. Next, solving the congruence 78557 · 2n + 1 ≡ 0(mod 3) for n,
one obtains n ≡ 0(mod 2). Hence, we know if n ≡ 0(mod 2) - that is, if n is even - then
78557 · 2n + 1 is divisible by 3. Furthermore, if 78557 · 2n + 1 is prime, then n must be
odd.

Performing this procedure for the next prime, namely 5, the residue class 1(mod 4)
is acquired. Thus, if n ≡ 1(mod 4), then 78557 · 2n + 1 is divisible by 5, and our prime
counterexample must result from a value of n from the residue class 3(mod 4). Re-
peating this procedure for the primes 7, 11 and 13, the resulting residue classes are 1
(mod 3), 6(mod 10) and 11(mod 12), respectively. However, the residue class produced
by the prime 11, 6(mod 10), is unnecessary as we already showed any even value of
n will cause 78557 · 2n + 1 to be divisible by 3. So, the residue classes derived from
primes 7 and 13 may be incorporated in the covering system, while 11 is not necessary
to include.

Continuing with the next few primes, most of the residue classes computed are
either rendered irrelevant by prior results, or do not significantly restrict the form of n.
However, for the primes 19, 37 and 73, the residue classes calculated - 15(mod 18),
27(mod 36) and 3(mod 9), respectively - considerably restrict n. In fact, with all the
residue classes, all possible values for n are eliminated. This is how, in 1962, Selfridge
proved that 78557 is a Sierpiński number.

For the partial coverings systems that we will generate, the aforesaid congruence
k ·2n+1 ≡ 0(mod p) may be solved for some Sierpiński candidate k for primes less than
100, excluding 2, before constructing substantial partial covering systems and sets.

Then, with [4] or [6], one can compute the prime factorization of k · 2n + 1 for the
smallest value of n excluded by the partial covering system. The procedure can then
be completed for the prime factors supplied and repeated. Thereafter, the primes and
congruences acquired may be added to the partial covering set and system respectively
if the solutions significantly change the form of n. Otherwise, they may be included in
a list of restrictions imposed on n.

3 Results for the Sierpiński problem

For the following Sierpiński candidates, the partial modular covering set and system
will be presented below, followed by the form that n must take for k ·2n+1 to be prime
and, finally, tables providing further restrictions on n.

3.1 Candidate 1: 21181

For the first Sierpiński candidate, 21181, begin by testing p = 3, which yields m = 2,
and the congruence n ≡ 1(mod 2). Thus far, n is restricted to the form n = 2j for some
non-negative integer j. Continuing this process with the next few primes, one obtains
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the following:
p n ≡ · · ·
5 2 (mod 4)

7 0 (mod 3)

13 4 (mod 12)

17 0 (mod 8)

These congruences restrict n to the form n = 24j + 20 for non-negative integers j, due
to the fact that each congruence comprising the partial covering system, on its own or
when paired with another congruence, changes the form of n. Other congruences do
not change the form of n, but nonetheless inflict modular conditions on n as well as the
value of j. They are as follows:

p n ≡ · · · j ≡ · · ·
11 6 (mod 10) 4 (mod 5)

23 10 (mod 11) 6 (mod 11)

47 19 (mod 23) 22 (mod 23)

71 15 (mod 35) 10 (mod 35)

89 0 (mod 11) 1 (mod 11)

p n ≡ · · · j ≡ · · ·
157 40 (mod 52) 3 (mod 13)

163 122 (mod 162) 11 (mod 27)

223 35 (mod 37) 33 (mod 37)

683 8 (mod 22) 5 (mod 11)

1013 56 (mod 92) 13 (mod 23)

For each of the remaining candidates, partial covering sets and systems and list of
conditions can be assembled in a similar fashion.

3.2 Candidate 2: 22699

p n ≡ · · ·
3 1 (mod 2)

5 0 (mod 4)

7 2 (mod 3)

13 6 (mod 12)

17 2 (mod 8)

19 4 (mod 18)

73 7 (mod 9)

These congruences restrict n to the form n = 72j + 46 for non-negative integers j.
Other congruences include:

p n ≡ · · · j ≡ · · ·
11 6 (mod 10) 0 (mod 5)

23 10 (mod 11) 5 (mod 11)

47 22 (mod 23) 15 (mod 23)

53 14 (mod 52) 1 (mod 13)

59 54 (mod 58) 13 (mod 29)

173 30 (mod 172) 38 (mod 43)

233 17 (mod 29) 0 (mod 29)
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3.3 Candidate 3: 24737

p n ≡ · · ·
3 0 (mod 2)

5 1 (mod 4)

7 0 (mod 3)

13 11 (mod 12)

17 3 (mod 8)

These congruences restrict n to the form n = 24j +7 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 9 (mod 10) 3 (mod 5)

31 0 (mod 5) 2 (mod 5)

173 171 (mod 172) 14 (mod 43)

3.4 Candidate 4: 55459

p n ≡ · · ·
3 1 (mod 2)

5 0 (mod 4)

7 2 (mod 3)

13 6 (mod 12)

These congruences restrict n to the form n = 12j+10 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 2 (mod 10) 1 (mod 5)

37 34 (mod 36) 2 (mod 3)

43 2 (mod 14) 4 (mod 7)

47 0 (mod 23) 3 (mod 23)

59 0 (mod 58) 4 (mod 29)

83 24 (mod 82) 8 (mod 41)

103 4 (mod 51) 8 (mod 17)

181 10 (mod 180) 0 (mod 15)

613 154 (mod 612) 12 (mod 51)

709 22 (mod 708) 1 (mod 59)

733 190 (mod 244) 15 (mod 61)
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3.5 Candidate 5: 67607

The final Sierpiński candidate of the Sierpiński Problem does not have one singular
form that n must take for 67607 · 2n + 1 to be prime, but rather four as a result of the
breadth and structure of the partial covering system. The overarching partial covering
set and system will be initially introduced and then listed will be the modular restric-
tions for each form of n.

p n ≡ · · ·
3 0 (mod 2)

5 1 (mod 4)

11 5 (mod 10)

13 7 (mod 12)

17 7 (mod 8)

19 11 (mod 18)

31 3 (mod 5)

37 15 (mod 36)

41 19 (mod 20)

73 3 (mod 9)

331 17 (mod 30)

These congruences restrict n to one of the forms 360j1 + 27, 360j2 + 131, 360j3 + 171
and 360j4 + 251 for non-negative integers j1, j2, j3 and j4. Concerning the table below,
N/A denotes that, for a particular form of n, no value inputted for the form one is
considering will fulfil the congruence introduced by n: the restriction does not apply.

p n ≡ · · · j1 ≡ · · · j2 ≡ · · · j3 ≡ · · · j4 ≡ · · ·
23 4 (mod 11) 4 (mod 11) 2 (mod 11) 8 (mod 11) 9 (mod 11)

29 11 (mod 28) 4 (mod 7) 2 (mod 7) 5 (mod 7) 4 (mod 7)

43 9 (mod 14) 1 (mod 7) 6 (mod 7) 2 (mod 7) 1 (mod 7)

103 45 (mod 51) 6 (mod 17) N/A 9 (mod 17) N/A
107 77 (mod 106) 34 (mod 53) 29 (mod 53) 23 (mod 53) 11 (mod 53)

229 63 (mod 76) 2 (mod 19) 11 (mod 19) 13 (mod 19) 17 (mod 19)

283 33 (mod 94) 29 (mod 47) 12 (mod 47) 38 (mod 47) 43 (mod 47)

293 179 (mod 292) 28 (mod 73) 5 (mod 73) 13 (mod 73) 29 (mod 73)

461 407 (mod 460) 10 (mod 23) N/A N/A N/A
491 87 (mod 490) 41 (mod 49) N/A N/A N/A
751 56 (mod 375) N/A 5 (mod 25) N/A 13 (mod 25)

3041 667 (mod 1520) 6 (mod 38) N/A N/A N/A

6



4 Results for the Extended Sierpiński Problem

Quite similar in objective to the Sierpiński Problem, the Extended Sierpiński Problem
has eight candidates, for which the same process may be applied.

4.1 Candidate 1: 91549

p n ≡ · · ·
3 1 (mod 2)

5 0 (mod 4)

7 1 (mod 3)

13 2 (mod 12)

17 2 (mod 8)

These congruences restrict n to the form n = 24j +6 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 8 (mod 10) 3 (mod 5)

29 26 (mod 28) 2 (mod 7)

43 6 (mod 14) 0 (mod 7)

47 11 (mod 23) 5 (mod 23)

59 20 (mod 58) 3 (mod 29)

67 48 (mod 67) 10 (mod 11)

89 6 (mod 11) 0 (mod 11)

149 54 (mod 148) 2 (mod 37)

3889 174 (mod 648) 7 (mod 27)

4.2 Candidate 2: 131179

p n ≡ · · ·
3 1 (mod 2)

5 0 (mod 4)

7 0 (mod 3)

13 10 (mod 12)

19 14 (mod 18)

73 8 (mod 9)

These congruences restrict n to the form n = 36j +2 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
23 4 (mod 11) 8 (mod 11)

71 12 (mod 35) 10 (mod 35)

101 74 (mod 100) 2 (mod 25)

811 2 (mod 270) 0 (mod 15)
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4.3 Candidate 3: 163187

p n ≡ · · ·
3 0 (mod 2)

5 1 (mod 4)

7 1 (mod 3)

13 11 (mod 12)

241 3 (mod 24)

These congruences restrict n to the form n = 24j+15 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
83 61 (mod 82) 19 (mod 41)

89 4 (mod 11) 0 (mod 11)

107 87 (mod 106) 3 (mod 53)

113 7 (mod 28) 2 (mod 7)

127 4 (mod 7) 1 (mod 7)

139 69 (mod 138) 8 (mod 23)

223 10 (mod 37) 26 (mod 37)

313 147 (mod 156) 12 (mod 13)

433 39 (mod 72) 1 (mod 3)

521 135 (mod 260) 5 (mod 65)

631 18 (mod 45) 2 (mod 15)

4.4 Candidate 4: 200749

p n ≡ · · ·
3 1 (mod 2)

5 0 (mod 4)

7 1 (mod 3)

13 2 (mod 12)

17 6 (mod 8)

These congruences restrict n to the form n = 24j+18 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 0 (mod 10) 3 (mod 5)

23 5 (mod 11) 10 (mod 11)

59 38 (mod 58) 25 (mod 29)

73 0 (mod 9) 0 (mod 3)

83 72 (mod 82) 33 (mod 41)

139 90 (mod 138) 3 (mod 23)
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4.5 Candidate 5: 209611

p n ≡ · · ·
3 1 (mod 2)

5 2 (mod 4)

7 1 (mod 3)

13 0 (mod 12)

17 4 (mod 8)

These congruences restrict n to the form n = 24j +8 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 6 (mod 10) 2 (mod 5)

19 14 (mod 18) 1 (mod 3)

29 0 (mod 28) 2 (mod 7)

47 8 (mod 23) 0 (mod 23)

59 54 (mod 58) 14 (mod 29)

79 26 (mod 39) 4 (mod 13)

151 8 (mod 15) 0 (mod 5)

307 80 (mod 102) 3 (mod 17)

593 44 (mod 148) 20 (mod 37)

4.6 Candidate 6: 227723

p n ≡ · · ·
3 0 (mod 2)

5 3 (mod 4)

7 0 (mod 3)

13 5 (mod 12)

17 1 (mod 8)

These congruences restrict n to the form n = 24j+13 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 5 (mod 10) 3 (mod 5)

53 17 (mod 52) 11 (mod 13)

73 1 (mod 9) 1 (mod 3)

107 55 (mod 106) 15 (mod 53)

139 37 (mod 138) 1 (mod 23)

409 121 (mod 204) 13 (mod 17)
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4.7 Candidate 7: 229673

p n ≡ · · ·
3 0 (mod 2)

5 3 (mod 4)

7 1 (mod 3)

13 5 (mod 12)

19 9 (mod 18)

37 21 (mod 36)

These congruences restrict n to the form n = 36j+33 for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 3 (mod 10) 0 (mod 5)

41 5 (mod 20) 2 (mod 5)

47 19 (mod 23) 6 (mod 23)

59 39 (mod 58) 5 (mod 29)

67 27 (mod 66) 9 (mod 11)

71 17 (mod 35) 13 (mod 35)

83 49 (mod 82) 5 (mod 41)

139 39 (mod 138) 4 (mod 23)

163 141 (mod 162) 3 (mod 9)

199 42 (mod 99) 3 (mod 11)

571 93 (mod 114) 8 (mod 19)

4.8 Candidate 8: 238411

p n ≡ · · ·
3 1 (mod 2)

5 2 (mod 4)

7 2 (mod 3)

13 4 (mod 12)

These congruences restrict n to the form n = 12j for non-negative integers j. Other
congruences include:

p n ≡ · · · j ≡ · · ·
11 2 (mod 10) 1 (mod 5)

19 0 (mod 18) 0 (mod 3)

53 16 (mod 52) 10 (mod 13)

83 6 (mod 82) 21 (mod 41)

103 9 (mod 51) 5 (mod 17)

131 116 (mod 130) 53 (mod 65)

197 184 (mod 196) 48 (mod 49)

283 16 (mod 94) 17 (mod 47)

353 16 (mod 88) 16 (mod 22)

373 180 (mod 372) 15 (mod 31)

409 180 (mod 204) 15 (mod 17)

421 216 (mod 420) 18 (mod 35)

1201 264 (mod 300) 22 (mod 25)

Thus, the enumeration of partial covering sets and systems and restrictions for each
Sierpiński candidate in the Sierpiński and extended Sierpiński problem is complete.
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5 Overview of results

The prior sections provide further insight for those engaged with the Sierpiński Prob-
lem and the Extended Sierpiński Problem, heavily restricting the form of n. The table
below lists the form(s) that n must take to obtain a counterexample for a Sierpiński
candidate k, the first five being part of the Sierpiński Problem and the next eight be-
ing part of the Extended Sierpiński Problem. For additional restrictions on n for each
Sierpiński candidate, please see the subsection devoted to it, either in Section 3 for the
Sierpiński Problem or in Section 4 for the Extended Sierpiński Problem.

k n = · · ·
21181 24j + 20

22699 72j + 46

24737 24j + 7

55459 12j + 10

67607 360j + 27 , 360j + 131 , 360j + 171 , 360j + 251

91549 24j + 6

131179 36j + 2

163187 24j + 15

200749 24j + 18

209611 24j + 8

227723 24j + 13

229673 36j + 33

238411 12j

With these results, prime computing programs may now more efficiently work to re-
solve the Sierpiński problems. For each Sierpiński candidate, the number of primes
which must be checked can be cut down quite significantly, fulfilling the initially stated
goal of this paper.
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