Parabola Volume 60, Issue 1 (2024)

Almost-linear approximation of $ln(1+x)$ **valid for** $0 \le x \le 1$ **Robert Schneider**[1](#page-0-0)

It is a well-known estimate that, for small values of real numbers $x \geq 0$ much smaller than 1, the linear function x approximates $ln(1 + x)$ as

$$
\ln(1+x) = x + \varepsilon_0(x),
$$

where the error term $\varepsilon_0(x)$ is

$$
\varepsilon_0(x) = \sum_{n=2}^{\infty} \frac{(-1)^{n+1} x^n}{n} \le 0
$$

since the Maclaurin series [\[1,](#page-1-0) [2\]](#page-1-1) of $ln(1 + x)$ is

$$
\ln(1+x) = x + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} x^n}{n}.
$$

Explicitly, for $0 \le x \le 1$, the error term $\varepsilon_0(x)$ ranges over the interval

$$
[-0.3052\ldots, 0],
$$

with $\varepsilon_0(0) = 0$ and $\varepsilon_0(1) = \ln(2) - 1 \approx -0.3052$. This error term is negligible for $x \ge 0$ close to zero, but, for x *not* close to zero, any linear approximation of $\ln(1+x)$ fails.

It would be quite useful if this easy approximation for the natural log function held on all of [0, 1]. Alas, it does not! The *relative error* $\frac{|\varepsilon_0(x)|}{\ln(1+x)}$ is as great as 44.3% as $x \to 1^-$.

One *can* however prove a similar, almost-linear approximation that is valid on the entire interval. Observe for $0 \le x \le 1$ that $1 + x$ is approximated roughly by 2^x for x close to 0 or 1 (the reader can check on a calculator), and $1 + x = 2^x$ exactly for $x = 0$ and $x = 1$. Taking logarithms of both sides gives an even better approximation: the following formula interpolates between x when $x \ge 0$ is small, and $x \ln 2$ for $x \le 1$ close to 1, with small relative error on the entire interval.

Theorem 1. *For* $0 \le x \le 1$ *, we have the estimate*

$$
\ln(1+x) = x(\ln 2)^x + \varepsilon(x),
$$

with error $\varepsilon(x) \leq 0$ *such that* $\varepsilon(0) = \varepsilon(1) = 0$, and maximum magnitude $|\varepsilon(x)| = 0.0115...$ $at\ x = 0.6081\ldots$ *. The relative error* $\frac{|\varepsilon(x)|}{\ln(1+x)}$ does not exceed 2.70% on the interval $[0,1]$ *.*

¹Robert Schneider is Assistant Professor at Michigan Technological University, Houghton, MI, U.S.A.

In the first graph below, the reader can see the three curves $y_1 = x$, $y_2 = \ln(1+x)$ and $y_3 = x(\ln 2)^x$ converge as x nears the origin 0; and that y_2 and y_3 essentially coincide on the interval $0 \le x \le 1$ $0 \le x \le 1$, as Theorem 1 states. The second graph illustrates how $y_3 = x(\ln 2)^x$ fails to approximate $y_2 = \ln(1+x)$ when x gets larger than 1, though y_3 still lies far closer to y_2 than does y_1 .

To prove Theorem [1,](#page-0-1) note first that it is clear the error is zero at the endpoints of the interval, since $\ln(1+0) = 0 \cdot (\ln 2)^0$ and $\ln(1+1) = 1 \cdot (\ln 2)^1$ exactly. The remaining claims in the theorem follow from the first and second derivative tests in calculus, together with the Extreme Value Theorem (see [\[2\]](#page-1-1)). The author used *Wolfram* [Alpha [\[3\]](#page-1-2) webbased software to compute the first and second derivatives, and to approximate the critical number and maximum value of $|\varepsilon(x)|$. On the interval $(0, 1)$, the relative error $|\varepsilon(x)|$ $\frac{\varepsilon(x)]}{1+x}$ achieves its maximum value $0.026954\ldots$, or about 2.70% , at $x=0.448219\ldots$.

Acknowledgments

Dedicated to my calculus students, past, present and future. Thank you to Maxwell Schneider for advice about numerical approximations.

References

- [1] E. Maor, e: The Story of a Number, Princeton University Press, 2011.
- [2] J. Stewart, D.K. Clegg and S. Watson, Multivariable Calculus, Cengage Learning, 2020.
- [3] Wolfram Research, Inc., Wolfram|Alpha Notebook Edition, Champaign, IL, 2021.