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Solutions 1721–1730
Q1721 Nine people are participating in a “secret Santa” at an office Christmas party.
Each brings along a gift which will be passed on to one of the people at the party, so
that each person contributes one gift and receives one gift. The name of each person at
the party is written on a slip of paper and placed in a bag: each person picks at random
a slip from the bag. Then each person gives their gift to the person whose name they
have drawn, who then passes it on to the person whose name they have drawn: for
example, if Andy draws Betty’s name and Betty draws Chiara’s name, then Andy’s gift
ends up being given to Chiara. The idea behind passing gifts twice is to ensure that
no–one will know who their gift originally came from.

The office newsletter editor, who is not much interested in secrecy, later publishes a
report stating that gifts went from Andy to Chiara, from Betty to Harriet, from Chiara
to Ivan, from David to Greg, from Elinor to Betty, from Frederica to Andy, from Greg
to Elinor, from Harriet to David and from Ivan to Frederica.

Prove that the report is wrong.

SOLUTION We can regard the secret Santa as a “rearrangement” of the gifts, more
commonly known in mathematics as a permutation . If we write down any person’s
name, then the person their gift went to, then the person their gift went to, and so on,
then we must eventually form a cycle leading back to the first person; if there remain
any people who have not been listed, then we can choose one of them and repeat the
procedure. In this way, the distribution of gifts can be written as a “product of cycles”,
and the published information claims that in the present case, the distribution is

(

A C I F
)(

B H D G E
)

.

Now consider the permutation which defines one “round” of passing gifts. This also
can be written as a product of cycles. Suppose that the product includes a cycle

(

x1 x2 · · · x2k x2k+1

)

of odd length. Doing this twice, as implemented at the party, gives the cycle

(

x1 x3 x5 · · · x2k+1 x2 x4 · · · x2k

)

,

having the same (odd) length, in the “gift distribution” permutation. If there is a cycle

(

x1 x2 · · · x2k−1 x2k

)

of even length, then we get two cycles

(

x1 x3 · · · x2k−1

)(

x2 x4 · · · x2k

)
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each of length k. It follows that starting with an odd length cycle cannot produce an
even length cycle; starting with an even length cycle can produce an even length cycle
(because k might be even), but in that case will always produce two of them. It follows
that any result containing an even length cycle once only, such as

(

A C I F
)

in the
claimed distribution, is impossible.

Q1722 In Problem 1707, we considered all products of eleven different positive inte-
gers having sum 82, and found the greatest common divisor (highest common factor)
of all these products. Now change the sum to s, where s is an integer not less than 66.
(If s < 66, then there is no collection of eleven different positive integers with sum s,
and so the problem does not make much sense.) Find the smallest value of s for which
the greatest common divisor of all the corresponding products of eleven numbers is 1.
If smin is this smallest value and we consider a sum s > smin, then does it necessar-
ily follow that the greatest common divisor of all products of eleven different positive
integers with sum s is still 1?

SOLUTION The smallest value of s is 112 = 121. To see this, first note that the smallest
possible sum of eleven different positive odd numbers is

1 + 3 + 5 + · · ·+ 21 = 121 ;

so if s < 121 and positive integers x1, x2, x3, . . . , x11 add up to s, then at least one of the
xk must be even. Hence, in this case, every product under consideration is even, and
the GCD (greatest common divisor) of all the products must be 2, if not more.

This shows that the required GCD cannot be 1 if the sum s is less than 121; to show
that the GCD is equal to 1 when s = 121, we follow the ideas of Solution 1707. Consider
the following three sums of eleven different positive integers:

1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 = 121 ;

1 + 2 + 4 + 5 + 7 + 8 + 10 + 11 + 13 + 14 + 46 = 121 ;

1 + 2 + 3 + 4 + 6 + 8 + 12 + 16 + 18 + 24 + 27 = 121 .

In the first case, none of the summands has 2 as a factor; so 2 is not a factor of their
product, and is not a factor of the GCD of all products. For similar reasons, the second
sum shows that 3 is not a factor of the GCD. In the third case, none of the summands
has any prime factor greater than 3; so their product has no prime factor greater than 3,
and the GCD cannot have such a factor either. We have shown that in the case s = 121,
the GCD of all products has no prime factor at all, and therefore is equal to 1.

If we consider a sum s > 121, then it need not be true that the GCD of all products
is still 1. Indeed, let s be an even number greater than 121. Any eleven integers with
sum s must include at least one even number (because the sum of eleven odd numbers
is odd); therefore, by the same argument as we used in the first paragraph of this
solution, the GCD of all products of eleven integers adding up to s must be at least 2.
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Q1723 In how many ways can one select 5 points from the 64 shown, such that at
least three of the chosen points lie in a straight line? Here, a “straight line” means one
of the horizontal or vertical lines shown in the diagram, and the points in a line do not
need to be adjacent points on the grid.

SOLUTION from Hyunbin Yoo, South Korea. Place three points on a line and think
about where the remaining two points could be. Depending on whether there are two,
one, or zero out of the remaining two points on the same line as the three, the problem
can be broken down into three cases.

1. Both points on the same line. If the two remaining points are both placed on the
same line as the previously placed three points, then this means that all five points are
on a single line. To find the total number of cases, we multiply the number of lines by
the number of cases of picking 5 points from a line. This is 16

(

8

5

)

= 896.

2. One point on the same line. If one of the two remaining points is placed on the
same line, there are four points on one line and one not on the line. There are once
again 16 lines, and four points to choose out of eight. Finally, choose one point from
the 56 points not on the line. We get 16

(

8

4

)(

56

1

)

= 62720.

3. Neither point on the same line. In this case, three points are on a line and two
points are outside it: 16 lines, pick three out of eight points, then two out of 56 points.
We get 16

(

8

3

)(

56

2

)

= 1379840.

4. Two lines. But wait! It is possible that one set of three points is on a straight line
and another on yet another straight line. This is achieved when one of the points is the
intersection of one horizontal and one vertical line: the red dots in the diagram give an
example.

Since these cases are counted twice in Case 3, we need to subtract them once. For each
of the 64 points, there is a unique horizontal–vertical line combination. Then we pick
two points from each of the two lines; that is, 64

(

7

2

)(

7

2

)

= 28224.

The answer we are looking for is thus 896 + 62720 + 1379840− 28224 = 1415232.

3



Q1724 If x is a rational number, then we define f(x) to be the denominator of x. That
is, if x = p/q in lowest terms, then f(x) = q. Part of the graph of y = f(x) is shown
below. Can you explain the “dotted curves” appearing in the image? Or any other
notable features?
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SOLUTION First we look at the leftmost “dotted curve”, here shown as a sequence of
blue dots.
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These are the points on the graph corresponding to fractions x with numerator p = 1.
In this case, we have

x =
1

q
and y = f(x) = f

(1

q

)

= q =
1

x
.

That is, all of these points lie on the hyperbola y = 1/x, which explains why they
give the appearance of a smooth curve. The “curves” above this one are formed by
fractions x with numerators 2, 3, 4, . . . . Likewise, the points on the rightmost “dotted
curve” correspond to p = q − 1; we have

x =
q − 1

q
, y = f

(q − 1

q

)

= q =
1

1− x
,

and these are therefore points on the curve y = 1/(1− x), a hyperbola with asymptote
x = 1. The two “dotted curves” forming a “tunnel” above the point x = 1

2
(and other

tunnels elsewhere) can be explained similarly: we invite readers to fill in the details.
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One further observation: notice that, for example, the third “curve” on the left (red
in the diagram) appears to have gaps in it. This is the curve corresponding to numera-
tor 3; that is, x = 3/q. However, if q is a multiple of 3, then we will have to cancel the 3
before computing f(x). For instance, if q = 12, then x = 3

12
does not have denominator

12; rather, we write x = 1

4
and the denominator is 4. Therefore, this point is “missing”

from the p = 3 curve and belongs to the p = 1 curve instead; the same applies to every
third point. For similar reasons, the p = 6 curve (orange) includes only the first and
fifth out of every six consecutive points, missing the second, third, fourth and sixth;
and likewise for other numerators.

Q1725 Let n be a positive integer. Prove that n2 has no factor m in the integer interval
n < m ≤ n+

√
n .

SOLUTION Let m be a factor of n2 greater than n; then we can write m = n+ a where
a is a positive integer. Now m is a factor of n2 by assumption; also, m is a factor of
(n + a)(n − a) = n2 − a2; therefore, m is a factor of the difference n2 − (n2 − a2) = a2.
Therefore, we have

a2 ≥ m > n ,

so a >
√
n and m > n+

√
n . Therefore, n2 has no factor m for which n < m ≤ n+

√
n .

Q1726 Given a positive integer n, we seek sequences a1, a2, . . . , ak of one or more
positive integers for which it is possible to arrange a row of black and white squares
such that the black squares occur in blocks of length a1, a2, . . . , ak, in that order from left
to right, and there is at least one white square between adjacent blocks. For example, if
n = 15, then one of the possible sequences is 1, 1, 4, 2, as shown by the following row.

For a given positive integer n, in how many ways can this be done?

This problem was inspired by the “nonograms” puzzle which can be found on var-
ious websites.

SOLUTION Let an be the number of valid sequences for a specified integer n; let n ≥ 3
and consider a sequence a1, a2, . . . , ak. There are three possible cases.

• Suppose that a1 > 1. Then the sequence is valid for n if and only if the sequence
a1 − 1, a2, . . . , ak is valid for n − 1. This is because we can remove a black square
from the leftmost block in a row of n squares to create an allowable option for
n − 1 squares, or, conversely, add an extra black square to the leftmost block in a
row of n− 1 squares to create an allowable option for n squares. So the number of
options in this case is an−1.

• Suppose that a1 = 1 and the sequence contains further elements (so, k ≥ 2). Then
a1, a2, . . . , ak is valid for n if and only if a2, . . . , ak is valid for n − 2, since we can
remove a black followed by a white square from a suitable row of n squares, or,
conversely, insert a black and a white into a row of n− 2 squares. So the number
of options in this case is an−2.
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• The only remaining option is that the sequence consists of a 1 and nothing else;
and this is a valid sequence.

Therefore, we have
an = an−1 + an−2 + 1 .

Writing this in the form

(an + 1) = (an−1 + 1) + (an−2 + 1)

shows that it is (essentially) the celebrated Fibonacci recurrence. It is easy to show that
a1 + 1 = 2 = F3 and a2 + 1 = 3 = F4, so for all n we have an + 1 = Fn+2. Thus, for any
given n, the number of allowable sequences is

Fn+2 − 1 ,

where Fk is the kth Fibonacci number.

Q1727 Is it possible to find a square number beginning with any given sequence of
digits?

SOLUTION Suppose the given digits form the integer a. Then we want a square
whose digits are those of a, followed by (say) k further digits. That is, we want

a10k ≤ s2 < (a+ 1)10k . (∗)

Suppose there is no such s, and let t2 be the largest square less than a10k. Then the next
square must be at least (a+ 1)10k, and we have

t2 ≤ a10k − 1 and (t+ 1)2 ≥ (a+ 1)10k .

Subtracting these inequalities gives 2t ≥ 10k; together with t2 < a10k, this yields

10k < 4a .

So, if we choose k such that 10k ≥ 4a, then this is impossible; there must be an integer s
satisfying (∗), and so there must be a square beginning with the digits of a.

Specifically, given a, let k be the number of digits in 4a, and let the integer s be√
a10k, rounded upwards. Then

a10k ≤ s2 .

Moreover,
s2 <

(

√
a10k + 1

)2
= a10k + 2

√
a10k + 1

and
(

2
√
a10k

)2
= 4a10k < 102k ,

so
s2 < a10k + 10k = (a + 1)10k ,

and therefore s2 is a square which begins with the digits of a.
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Q1728 Show that if x, y, z are positive real numbers and xyz = 1, then

x1/2 + y1/4 + z1/6 ≥ 22/331/2 .

SOLUTION We write the left–hand side of the given inequality as a sum of six terms,
and then use the Arithmetic–Geometric Mean Inequality:

a1 + a2 + a3 + a4 + a5 + a6
6

≥ (a1a2a3a4a5a6)
1/6 .

Thus,

x1/2 + y1/4 + z1/6 = x1/2 +
(y1/4

2
+

y1/4

2

)

+
(z1/6

3
+

z1/6

3
+

z1/6

3

)

≥ 6

(

x1/2
(y1/4

2

)2(z1/6

3

)3
)1/6

=
6

22/633/6
(xyz)3

= 22/331/2 .

Solution received from Toyesh Prakash Sharma (who contributed the problem), and
from Titu Zvonaru, Comăneşti, Romania.

Q1729 We have n coins, all placed heads up on a table. It is permitted to select any k
of the coins and flip them; and to do a similar operation repeatedly. Here, k is a fixed
positive integer less than n. The aim is to get all of the coins facing tails up. Prove that
this can be done if and only if either n is even or k is odd.

SOLUTION First, suppose that n is even. We can flip any pair of coins, say coins i
and j, as follows. Take any set S of k− 1 coins including neither i nor j; flip S together
with i; flip S together with j. Then i and j have been flipped; and any other coin has
been flipped either not at all, or twice, which is the same as not being flipped at all.
So we now have two coins tails up and the rest heads; we can repeat the procedure to
obtain two more coins tails up, and two more, and so on; since n is even, we can make
all the coins face tails up.

Secondly, suppose that k is odd. Arrange the coins in a circle. Flip k consecutive
coins; then the next k around the circle; and so on; do this n times. This means we have
performed nk flips, going all around the circle k times; so every coin has been flipped
k times. Since k is odd, every coin is now tails up.

It remains to show that the desired outcome cannot be achieved if n is odd and k
is even. If it were possible to reach a state in which all coins were tails up, then each
would have been flipped an odd number of times (not necessarily the same number
of times for each coin). The total number of flips would then be the sum of n odd
numbers, that is, an odd number of odd numbers, which is odd; and so it cannot be
the result of repeatedly flipping an even number of coins.
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Q1730 It is well known that to trisect an arbitrary angle, using ruler and compasses
in the classically permissible manner, is impossible. However, the job can be done by
origami!

Let OW be one side of a rectangular sheet of paper, and make a fold OZ so that
∠WOZ is the angle we wish to trisect. Make two equally spaced folds AX and BY
parallel to OW , as shown in the diagram. Fold the corner O back into the page in such
a way that O lies on the line AX , at a point we call C, and B lies on OZ, at a point we
call D. Prove that ∠WOC is one third of ∠WOZ.
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SOLUTION Label points as in the question; also, let E, F,G,H be the points at which
the fold meets OA, AX , OC, OW respectively, and draw the line OF . Let ∠WOC = α;
we shall prove that angles ∠COF and ∠FOZ are also equal to α, so that OC and OF
are the trisectors of ∠WOZ.
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First, we note that △OHE is folded on top of △CHE, so

|CH| = |OH| ;
|CG| = |OG| ;
|CF | = |OF | .

Also,
|CD| = |OB| = 2|OA| and ∠HCE = ∠HOE = 90◦ .
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Since OC is a transversal of the parallel lines OW and AX , we have

∠FCO = ∠WOC = α ;

and since |CF | = |OF |, triangle CFO is isosceles; therefore,

∠FOC = ∠FCO = α ,

and this was the first thing we wanted to prove.

Next, triangle CHO is isosceles, so ∠OCH is also equal to α; hence, OF ‖ HC;
we already know that OH ‖ FC and |CH| = |OH|; so OHCF is a rhombus and its
diagonals are perpendicular bisectors of each other. Now consider △COD and △HCF .
They have equal angles

∠DCO = 90◦ − α = ∠FHC

enclosed by proportional sides,

|CD|
|CO| =

2|OA|
|OC| =

2|HG|
|HC| =

|HF |
|HC| ,

the second equality being true because △OAC and △HGC are similar. Thus, triangles
COD and HCF are similar; so ∠COD = ∠HCF = 2α; hence,

∠FOZ = ∠COZ − ∠COF = α ,

and we are finished.
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