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Can the chicken cross the road?
Bernard Kachoyan1

1 Introduction

A little while ago, I was looking at a particular path-finding problem, namely to iden-
tify a path through an area while avoiding objects within that area. Working on this
problem prompted me to consider whether there was a way to figure out whether a
path existed at all, before I bothered to spend time looking for one, let alone trying to
optimise it in any way. This led me to rediscover the fascinating world of percolation
theory.

This article is a simple introduction to the general ideas with only minimal mathe-
matics. Good further detailed yet accessible discussions appear in [1, 2]. The Wikipedia
pages devoted to this topic are also quite informative and a mine of summary data; see
for example [3].

The name percolation theory arises from the following canonical question. Assume
that some liquid is poured on top of some nominally porous material. Will the liquid
be able to make its way from hole to hole and reach the bottom? We could also consider
such questions as

If a porous rock is submerged under water, will the water reach the centre?

How far from each other should trees be planted in order to minimize the spread
of disease or fire?

How infectious does a strain of flu have to be to create a pandemic?

How does the density of certain proteins affect the diffusion of substances through
the cell membrane?

How many nodes can be removed before a communications network loses con-
nectivity?

How fractured does a habitat need to be to affect species survival?

At what amount of doping will a non-conducting material conduct?

1Bernard Kachoyan is an Adjunct Associate Professor at UNSW Sydney.
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The applications go on and on: models of magnetism in physics, colloids, water-
sheds of landscapes, galaxy formation, market penetration etc. etc.

This is a relatively new field per se, most people citing a series of 1957 papers by
Broadbent and Hammersley; see for example [4] as the seminal works, their papers
concerning with the design of carbon filters for gas masks. However, many of the
theoretical results, as so often happens in applied mathematics, come from previous
work in physics with much narrower application.

The range of applications and the mathematical depth of this topic is such that a
UNSW Library search still found over 700 academic papers with the word “percola-
tion” in the title in 2022. Many results are quite recent. For example, the proof of
percolation for hard disks, which are defined below, apparently first appeared as re-
cently as 2014 [5]. It is still an item of current research and there are still many open
problems.

One reason for the interest in this topic is the existence of critical thresholds where
the qualitative behaviour of a system changes suddenly with small changes of some
underlying system parameter. Such a change in behaviour is often called a “phase
transition” in physical systems.

Indeed, in an infinite-sized system, the probability that a connected path exists is ei-
ther exactly zero or exactly one, and there must be a critical parameter (defined below)
threshold below which the probability is always 0 and above which the probability is
always 1.

If the size of each step is small compared to the overall object, for example sand
grains in a lump of sandstone, then the assumption of infinite size is reasonable. Nev-
ertheless, for finite-sized areas, it has been observed that the probability of an open
path can increases sharply from very close to zero to very close to one in a short span
of values of the driving parameter. This will be discussed further below.

Percolation theory and applications cover both the discrete and continuous do-
mains. Since it is easier to illustrate the concepts and because there are more analytical
results, we will start with the discrete formulation.

2 Discrete percolation

We consider first two dimensions for ease of exposition. Consider some form of grid or
tessellation (tiling) of the plane. This may or may not be a regular lattice like a square,
triangular, or hexagonal grid; see Figure 1.

In the terminology of the field, the edges are termed “bonds” while the tile ar-
eas themselves are called “sites”. There are now two types of associated percola-
tion. “Bond” percolation occurs along the links between the nodes (think a pipeline
network) while “site” percolation occurs through sites connected by a common edge
(think a checkers board). Every bond percolation problem can be realized as a site
percolation problem (on a different grid) but the converse is not true.

In bond percolation, there is a probability p that the edge (bond) between two neigh-
bours is “open”; that is, it can be traversed (and, obviously, probability 1 − p that it
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Figure 1: Varieties of grid/lattice: square, triangular and hexagonal.

cannot). Similarly in site percolation, there is a probability p that each site is “occu-
pied” (and 1 − p that it is “empty”). Each site/edge is assumed to be independent. In
applications, p can be a function of some physical quantity, for example temperature
or pressure.

The question is, for a given p, what is the probability that an open path2 exists
through the grid? The network is said to percolate if one exists and, thus, a liquid,
current or other substance, can be conducted. The answer is trivial for p = 0 or p = 1.
The question is: what happens in between these extremes?

The mathematics becomes very advanced very quickly, but some of the behaviours
can be seen in the simplest example, the infinite binary tree. To build this tree, start
with a single point V0. From that point, consider two possible paths to the next level V1.
From these two nodes branch two possible paths to the next level V2, and so on; see
Figure 2.
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Figure 2: Binary tree. Left: pictorial of tree structure. Right: probability of an infinite
path existing plotted against probability that each edge is open.

There is a probability p that each edge is open, and there are 2n points at level n that
can possibly be reached from V0. The probability that there is a path to level n, given

2Meaning a path, each of whose links is an “open” bond in bond percolation, or via contiguous
occupied sites in site percolation.
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that there is one from level n− 1, is

Pn = 1− (1− pPn−1)
2

and the probability there is an infinite open path starting from the root of the tree V0 is

P∞(p) = lim
n→∞

Pn .

It can be shown [1] that

P∞(p) =

{
0 if p < 1

2
;

2
p2

(
p− 1

2

)
if p ≥ 1

2
.

Note that there is a qualitative as well as quantitative change in behaviour at p = 1
2
,

namely from there being no chance of a path through to there being at least some
non-zero chance of a path through; see Figure 2. The probability at which this change
of behaviour occurs is called the critical probability, denoted by pc, where in this case
pc =

1
2
.
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Figure 3: Canonical behaviour of infinite percolation

If V0 is one of an infinite number of trees3, then the probability that an infinite path
exists in any of the trees is

Π∞(p) = 1− lim
n→∞

(
1− P∞(p)

)n
.

3Or perhaps one of an infinite number of such trees emanating from a single point.
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From the equation for P∞(p), this gives:

Π∞(p) =

{
0 if p < 1

2
;

1 if p ≥ 1
2
.

Thus arises the amazing result that, if each bond is open with a probability less than
pc =

1
2
, then there is 0 probability of a path, technically called a percolating, or a span-

ning, cluster4 through the trees — and hence, no need to look for one! Another way of
expressing this is that if p < pc, then all open clusters are finite with probability 1. If
p ≥ pc, then there is guaranteed to exist a path through the tree, in the sense that the
total probability of that event is exactly 1. Note this result says nothing about finding
a path, just that there will be one.

This generic behaviour, illustrated conceptually in Figure 2, applies in generality to
all lattices and dimensions5 The proof of this behaviour comes via something known
as the Kolmogorov Zero–One Law; see Box 1. An interesting corollary of this law is that
one can prove that the probability must be either 0 or 1 without necessarily being able
to tell which it is.

Box 1: Kolmogorov Zero-One Law

This deceptively simple mathematical law says that a “tail event” occurs with proba-
bility either 1 or 0; i.e., it will either almost surely happen or almost surely not happen.
One can prove that this is true for a given event without being able to tell which it is.

The definition of a tail event is quite technical but is defined in terms of infinite
sequences of random variables, for example in an infinite sequence of coin-tosses,
where heads occurring infinitely many times is a tail event.

Consider an infinite coin tossing with biased coins:

Case 1: prob(head on n’th coin) =
1

n

Case 2: prob(head on n’th coin) =
( 99

100

)n

In both cases, the probability tends to 0 as n grows to infinity.

What is probability of tossing an infinite number of heads?

It turns out that the probability is 1 for Case 1 and 0 for Case 2, something I would
submit is not obvious at first glance.

This law can be used to prove the well-known thought experiment of whether a
monkey typing at random would produce Shakespeare’s Hamlet given an infinite
amount of time. One can in fact prove that the monkey will not only certainly type
Hamlet but will do so infinitely many times. [9]

4A “cluster” refers to any chain of connection.
5In 3 dimensions, it is easy to envisage some simple lattices such as being cubic; in higher dimensions,

not so much, but they exist mathematically.

5



Critical thresholds have been calculated for a bewildering array of lattices. Some
have been determined theoretically; in most cases, only numerical estimates exist. For
example, for a square lattice, it can be proven analytically that the bond threshold is
exactly pc = 0.5. For site percolation, there is no exact solution, and the threshold has
been found numerically to be pc = 0.59 to two significant figures6. These two cases are
illustrated in Figures 4 and 5.

p = 0.3 p = 0.6

Figure 4: Bond percolation on a square lattice.
Left: p = 0.3, no percolation. Right: p = 0.6, complete percolation.

p = 0.4 p = 0.7

Figure 5: Site percolation on a square lattice. Left: p = 0.4, no percolation. Right:
p = 0.7, complete percolation. If, say, a voltage was placed across the grid and one
considers p as the fraction of sites occupied by a conducting substance, then the matrix
as a whole becomes conductive for p ≥ pc ; non-conductive otherwise.

Similarly, for a hexagonal, or honeycomb, lattice, the bond percolation threshold is
exactly 1− 2 sin(π/18) ≈ 0.653, and, for site percolation, it is approximately 0.697.

6It was long believed that this value should be 1
2 as well, but it turned out not to be so after careful

numerical studies.
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There are extra subtleties in considering whether we are discussing percolation
specifically in one direction, in either direction, in one and not the other or in both;
see for example [6]. However, these change the details of the quantitative results, not
the overall behaviour, so will not be discussed here. Importantly, the critical probabil-
ity/density does not depend on the type of wrapping. Similarly, it does not matter if
we are discussing percolating from a source point out to the edges, such as the spread
of a fire, for example.

It can also be shown that the infinite open cluster is unique. So, if more than one
path is found, then they must be able to be connected.

3 Scaling behaviour and universality

As noted above, percolation in an infinite lattice is equivalent to saying that there ex-
ists a cluster of infinite size (the infinite cluster). But not all clusters need to belong
to the infinite cluster; see for example Figures 4 or 5. Only in the limit as probability
approaches 1 will all the bonds/sites be connected and hence all belong to the same
cluster. Hence, we can reasonably ask about the behaviour of such statistical quantities
as the mean cluster size S(p) and the probability that a bond/site belongs to an infinite
cluster P∞(p).

These are hard questions that cannot be answered simply. One can infer that, when
approaching pc from below, the average size of the clusters increases as more connec-
tions are being formed. On passing pc, more and more of the links will belong to the
infinite cluster; hence, the average size of the clusters, excluding the infinite cluster,
will decrease. It turns out that, in the vicinity7 of pc, these quantities behave8 as

S(p) ∼ |p− pc|−γ

P∞(p) ∼ |p− pC |−β

where β and γ are the critical exponents for S(p) and P∞(p).
Such relationships are called power laws. Now, the interesting part is that the value

of the critical exponents is only a function of the dimensionality of the problem, not of
the details of the lattice9. It also does not depend on whether we are considering bond
or site percolation.

This power law and universal exponent behaviour is true for several other statisti-
cal quantities as well. In two dimensions, the critical exponents are known exactly and
have such non-intuitive values as 43

18
or 91

48
.

It can also be shown that the percolating (infinite) cluster at pc is a fractal10 with
dimensions related to the critical parameters.

7We will leave this undefined here.
8For hopefully obvious reasons, excluding the infinite cluster for p ≥ pc
9We have already seen that the critical threshold pc itself does depend on the lattice details.

10A fractal is a complex geometric shape that is often, but not necessarily, characterised by having
a non-integer dimension. They can describe many irregularly shaped objects or spatially non-uniform
phenomena in nature, such as coastlines, mountain ranges and snowflakes.
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4 Continuous percolation

In this case, consider finite-size objects11 placed randomly in a space. The randomness
can be made more precise in mathematical terms depending on the problem12, but the
general term “randomly” will be sufficient here. The question is whether there exists a
continuous path between objects from one side of the space to another.

Numerous objects have been studied in this context: circles, ellipses, squares, rect-
angles, sticks etc. Objects can be allowed to overlap – such objects are often called
“soft” – or not – in which case, they are called “hard”. The former usually correspond
to regions of interest, such as infection distances or detection ranges. The latter corre-
spond to physical objects such as sand grains or cells. They can also be aligned or have
random orientation.

Remarkably, continuous percolation shows the same characteristics as discrete case,
namely critical values, phase transitions, scaling universalities and so on. The same
scaling behaviour near the critical parameters exist as for discrete percolation – and
the critical exponents have the same values!

In the continuous case, the baseline critical parameter taking the role of the bond/site
probability is the space filler fraction Φ, given by

Φ = 1− e−η

where η is the total relative area occupied by objects.13 It is easy to see that Φ must be
between 0 and 1, as desired.

For discs14 of radius r, η = πr2ρ where ρ is the object density. For N objects in an
area of size A, ρ = N/A. Thus, the critical quantity can be expressed in terms of a
critical density for given radius of objects or vice versa.

Figure 6 shows an example of two-dimensional percolation using overlapping soft
(i.e., overlapping) discs. Discs highlighted in red provide a continuous path of con-
nected discs throughout the space shown.

Arguably, the more common view of percolation is actually the complement of the
percolation so far discussed: given objects in the space, what is the probability that
there is a path through them? This is certainly true for path-finding applications. In the
field, this is usually referred to as void15 percolation. In 2 dimensions, the probability
of void percolation is the inverse of the probability of direct percolation16; hence,

Φc(void) = 1− Φc(direct) and ηc(void) = ηc(dirct) .

This is not true in higher dimensions.

11that is, not abstract points of zero dimension.
12Two particular physical examples are: that the problem can be initiated by random removal as well

as placement, such as trees in a forest, or communication towers; and that the objects can be placed
within the constraints of some repulsive potential.

13For some objects, such as 1-D sticks, the number nc of objects of given size per unit is more appro-
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Figure 6: 2D percolation with circular overlapping discs. Discs highlighted in red pro-
vide a continuous path of connected discs through the space.

Type of Object Normal Void
Φc ηc Φc ηc

Soft Discs 0.68 1.13 1− Φc(direct) 1.13
= 0.32

Hard Discs 0.57 0.85 0.43 0.85
Random ellipses (e = 5) 0.46 0.61 0.54 0.61
Randomly oriented Squares 0.63 0.98 0.32 0.98
Overlapping spheres 0.29 0.34 0.034 3.51
Hard spheres 0.18 0.59
Randomly aligned cubes 0.21 0.24 0.045 3.1
4 D Overlapping hyperspheres 0.12 0.13 0.0021 6.16

Table 1: Sample critical threshold for various continuous percolation cases

Some critical parameters for continuous percolation are shown in Table 1.17 Note
that the relationship between η and Φ above is only truly valid for overlapping shapes.
In particular, for example, the critical value for relative area for overlapping discs is
ηc = 1.128 with a corresponding area fraction Φc = 1 − e−ηc ≈ 0.676. The critical disc
radius rc is then rc =

√
ηc/(ρπ) ≈ 0.6/

√
ρ.

It is interesting to compare this result with the simple situation where the discs
are placed in a square grid with grid spacing l. In this case, the percolation critical
radius rc is simply 1

2
, the radius at which all the discs are touching by construction.

The corresponding number density is ρ = 1/l2, and, hence, rc = 0.5/
√
ρ.

priate than the relative occupied area. For discs, nc =
4
πηc.

14Which are what circles are normally called in the percolation literature.
15Or sometimes “swiss-cheese” (true!)
16Consider that if a continuous path of objects exists from, say, top to bottom of a space, then there

would be no way to traverse that space between those objects from left to right.
17Many, many more are found in [3].
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5 Effect of the finite world

Thus far, we have focused on infinite networks looking for paths of infinite length. One
could rightly at this point argue that the real world does not have infinite length; nor
does it tend to have discontinuities, so it’s fair to ask the question: what happens to
this behaviour when finiteness is imposed?

It should come as no surprise that the behaviour is smooth for finite systems and ap-
proaches the behaviour approximating a discontinuity as the system gets larger. This
means that, in principle, we can get connectivity at less than the theoretical percolation
threshold or not get it even at a much higher occupancy. To illustrate this behaviour,
consider the simple binary tree of Figure 2. It is a simple matter in a spreadsheet to
check the probability of percolation for N trees of depth N . The result is shown in
Figure 7, together with the result for an infinite system size.
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Figure 7: Percolation probability for a binary tree of N levels. As the system size N
goes to infinity, the probability tends to a step function around pc.

The figure illustrates the convergence described above. Importantly, for a “size”
of only 64, the jump from 0 to 1 percolation occurs over a span of just 0.05 or so of
underlying probability. That is, a “large” system does not have to be that large to display
sudden phase change behaviour.

The binary tree result in Figure 7 may seem a bit artificial, but graphs similar to
Figure 7 have been seen in many applications; see for example [6, 7, 8].

Figure 7 also shows a number of other features of more general behaviour. One
is that the curves are not symmetrical around the critical probability. Another is that,
except for some special systems, the curves do not all cross each other at a single par-
ticular point, although they will tend to do so in the limit of high N .

A final interesting point is that universality of scaling also appears in the finite
length case. From reference [7], “the width of the transition window from . . . 0 to . . . 1 scales
as L−1/ν , where ν = 4/3 is a universal critical exponent for two-dimensional percolation.”.
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6 Summary and conclusions

Percolation theory helps us to understand the reasons for which physical processes
have sudden changes in behaviour and, in many cases, can predict when those changes
will occur. It can be considered in many different mathematical ways, both in discrete
and continuous domains. It has interesting mathematical properties such as universal-
ity and discontinuities in probability. It also has myriad applications in the real world,
from social networks to polymers.

No wonder it is such a hot topic.
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