
Parabola Volume 60, Issue 2 (2024)

Extract from Vector: A Surprising Story of Space, Time, and
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Robyn Arianrhod1

This article reproduces pages 11–17 and their endnotes from the recently published
book Vector: A Surprising Story of Space, Time, and Mathematical Transformation2

by Robyn Arianrhod (UNSW Press, July 2024). Minor adjustments to the presentation
have here been made, most notably the inclusion of the endnotes as footnotes and the
use of the Parabola citation style.

A cubic conundrum

The Mesopotamians initially had practical problems in mind when they developed
the method of solving quadratic equations by geometrically completing the square.
(The development of symbolic algebra was still several thousand years in the future,
waiting for the work of Thomas Harriot and René Descartes in the early seventeenth
century.) Living in a land where water was at a premium, the Mesopotamians’ tablets
contain many problems relating to canal and reservoir excavations, the capacity of
cisterns, the construction and repair of dams and levees, and administrative accounts
relating to these tasks – and to solve these problems, these ancient mathematicians
had to solve equations relating to areas and volumes. Nearly three thousand years
later, al-Khwārizmı̄, too, focused on similar practical problems, and he used a similar
geometrical method of completing the square – and so did other mathematicians right
up to the seventeenth century.

The Islamic mathematician Sharaf al-Dı̄n al-T. ūsı̄ was one of the earliest to make
progress in the search for solutions of cubic equations, in about 1200 CE, but the first
to publish correct general cubic algorithms was the Italian mathematician Girolamo
Cardano, in his 1545 book Ars Magna (The Great Art). Like everyone before him, he
still wrote his solutions in words (or abbreviations of words) rather than symbols, and
he still devised his method geometrically – literally completing a cube in a stunning
feat of visualization.

1Robyn Arianrhod is a science writer and historian of science.
2A review of this book can be found as another article in this issue of Parabola.
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A mathematical duel, a pesky equation, and an imaginary
number

As well as being a talented mathematician, Cardano was a physician, an astrologer,
a gambler, something of a philosopher, and a mystic who believed that his best ideas
came from a spirit who visited him at night. In the case of cubic equations, however,
he received his inspiration from his countryman Niccolò Tartaglia rather than his faith-
ful ethereal advisor. Cardano had heard that Tartaglia had cracked the problem, and
he was so intrigued that he badgered him to reveal his method – he even offered to
use his connections to put the impecunious Tartaglia in touch with influential people
who might pay him for his work on such useful topics as ballistics. Tartaglia finally re-
lented, on condition that Cardano keep the method secret – Tartaglia naturally wanted
to publish it himself or, better still, offer it to a future patron.

Some years later, while Tartaglia was still holding onto his secret, Cardano discov-
ered that Scipione del Ferro had also found the solution, before Tartaglia. So, Cardano
felt he could break his promise and publish – he always had his eye on a publicity op-
portunity – but he fully acknowledged both men, and he went beyond them in solving
a wider, more general range of equations. Still, Tartaglia was furious – so much so that
he challenged Cardano to a public duel, not with swords but with a problem-solving
competition. Cardano prudently refused: reputations (and jobs) were easily won and
lost in these fiercely competitive Renaissance spectacles. Besides, Tartaglia had already
taken on del Ferro’s student Antonio Fior, who knew of his teacher’s cubic method –
and Tartaglia had won that match.

In his book, Cardano explained his general algorithm in a page of ingenious geo-
metrical analogy and then gave specific illustrative examples. This is how he explained
his method for solving x3 = 6x + 40 (to use modern notation, which I’ll also use to
make Cardano’s algorithm a little easier to follow; bear with me, even if you just skim
through it, because the form of the expression in the last line has surprising relevance
to the story of imaginary numbers and, in turn, vectors):

“Raise 2, one-third the coefficient of x, to the cube, which makes 8; subtract this from
400, the square of 20, [which is] one-half of the constant, making 392; the square root of
this added to 20 makes 20 +

√
392, and subtracted from 20 makes 20 −

√
392; and the

sum of the cube roots of these, 3
√

20 +
√
392 +

3
√

20−
√
392, is the value of x.”

Phew! You’ve got to admire his patience in coming up with something so convoluted.3

3Cardano’s underlying algorithm (based on Tartaglia’s) for solving an equation of the form x3 =
cx+ d is this: choose new variables u, v and set x = u+ v, uv = c/3. Put these into the original equation,
and you’ll get u3 + v3 = d; eliminate v and this becomes a quadratic equation in u3, which can be
solved using the quadratic formula. Put this solution for u3 into u3 + v3 = d and solve for v3. Take the
cube roots of u3 and v3 to find u, v, and hence x = u + v. It’s ingenious, and all created without the
modern symbolism that makes it easier to keep track of your thought processes. The example I gave,
x3 = 6x + 40, and Cardano’s algorithm for solving it – together with his geometric completion of the
cube – is in Chapter XII of his Ars Magna, reprinted on page 230 in [R. Laubenbacher and D. Pengelley,
Mathematical Expeditions, Springer, New York, 1999].
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The interesting thing, from the point of view of the story of vectors – and of the
development of mathematics in general — is what happens when the number under
the square root sign in such a solution is negative. That is, when you have an imaginary
number such as

√
−121.

The Mesopotamians had ignored negative and imaginary solutions of quadratic
equations because they had no relevance to the practical problems they were trying to
solve — you can’t have negative or imaginary dimensions of fields and canals. Simi-
larly for the Greeks, through to al-Khwārizmı̄ and al-T. ūsı̄, and right up until Cardano
was forced to wrestle with these “impossible” numbers. He was studying the mathe-
matics of equations simply for its own sake, for the intellectual challenge of it — and he
was flummoxed by the fact that if he took the same method he’d used for x3 = 6x+ 40
and applied it to x3 = 15x+ 4, then the value of x turned out to be

3

√
2 +

√
−121 +

3

√
2−

√
−121 .

Cardano concluded that such a solution was “sophistic,” and “as subtle as it is useless”
— because aside from the unwelcome

√
−121, he already knew that in fact x = 4. He

knew this because he would have begun to understand the problem by guessing the
solution — something mathematicians have always done. It is especially useful when
there isn’t a known algorithm for solving a problem, so it is the way ancient algebra
began. For Cardano’s equation x3 = 15x + 4, you can see the idea by trying a simple
possible value such as x = 3; comparing each side you see that this is too small, so try
x = 4. In this case it works straight away, but sometimes you have to try intermediate
values. This is still the way mathematicians solve difficult problems “numerically,”
although they have algorithms (and now computers) to choose their guesses efficiently
and exhaustively.

Fifteen years later, around 1560, yet another excellent early modern Italian alge-
braist, Rafael Bombelli, took another look at Cardano’s conundrum. The question was,
what did x = 3

√
2 +

√
−121 + 3

√
2−

√
−121 have to do with it, given that the solu-

tion was x = 4? After a great deal of thinking, Bombelli suddenly had what he called
“a wild thought”: what if you could factor

√
−121 like this:

√
−121 =

√
121×

√
−1, to

get 11
√
−1? And could you then find what is nowadays called a “complex” number —

a mix of real and imaginary numbers — whose cube is 2 + 11
√
−1? Amazingly, with

trial, error, and a lot of patience he found that 2 +
√
−1 is a solution of 3

√
2 + 11

√
−1,

as you can see if you multiply out
(
2 +

√
−1

)3. Similarly, he found that 2 −
√
−1 is

a solution of
(
2 −

√
−1

)3. Adding these together as in Cardano’s solution, you get
x = 2+

√
−1 + 2−

√
−1, which, seemingly miraculously, gives x = 4. Mystery solved!

It was solved only for this special case, though, and when Bombelli knew before-
hand that x = 4 — he’d had a brilliant insight about manipulating imaginary numbers,
but he had no general algorithm. He didn’t write his equations in the transparent mod-
ern symbolic form I’ve given here, either — and like Cardano, he disparaged

√
−1 as

“sophistic”. But he did put this strange number more firmly on the mathematical radar
when his book Algebra was published in the 1570s. Little did he or anyone else know
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back then just how useful it would become.4

As for cubic equations, it was Harriot who first found general, symbolic algebraic
solutions, sometime around 1600 — and with no reference to geometry for his proofs.
John Wallis — perhaps the best British mathematician between Harriot’s time and
Newton’s — was one of the few near-contemporaries to recognize Harriot’s achieve-
ment in liberating algebra from geometry, treating, as Wallis put it5,

“algebra purely by itself, and from its own principles, without dependence on geometry,
or any connexion therewith.”

Using algebra to envisage geometry expands not just algebra but geometry, too, and
we’ll see that these two kinds of maths went hand in hand, each influencing the other,
as vectors and tensors emerged. But the first step had been to see, as Harriot and Wallis
did, that algebra was a subject in its own right, just as geometry was.

Harriot had taken his lead from the versatile early modern Frenchman François
Viète, who had begun to use uppercase letters for unknowns and whose treatise on
cubic equations Harriot studied assiduously. Harriot used lowercase letters as we do
today, and he used symbols so completely that he became a master of symbolic think-
ing. One of his insights was to show that polynomial equations can be generated by
multiplying their factors — for example, two linear factors generate a quadratic, three
give a cubic, four a quartic, and so on. This “factor theorem” may seem obvious now
— you may have learned it in a senior high school algebra class — but no one before
Harriot had written symbolic equations such as

(x− l)(x−m)(x− n) = 0 .

Actually, Harriot didn’t use separate round brackets for products, but wrote the fac-
tors one on top of the other with a square bracket around the group. And he tended
to use a rather than x for the unknown, and aa instead of a2. We owe the notation
x, x2, x3, x4, . . . to Descartes, who published it in 1637, although he still sometimes used
xx, and even aa, like Harriot. Either way, what this equation hints at is that a cubic
equation has to have three solutions, x = l, x = m, x = n, whether they are positive
or negative, real or imaginary. By contrast, Cardano’s algorithm had spoken of “the”
solution, as if there were only one — which is what you’d expect if you were imagining
it in terms of a material cube.6

4For instance, Schrödinger’s equation describes the dynamics of fundamental particles such as pho-
tons, electrons, and other subatomic particles — and it contains i. Electromagnetic waves, too, are easier
to handle mathematically using the complex form, so i is behind all sorts of modern technology.

5Wallis on Harriot: quoted on page 490 of [J.A. Stedall, Rob’d of Glories: The posthumous misfortunes
of Thomas Harriot and his algebra, Archive for History of Exact Sciences 54 (2000), 455–497].
Harriot first to algebraically (symbolically) solve cubics: The great mathematician Lagrange first made this
observation; see page 185 of [M. Seltman, Harriot’s algebra: reputation and reality, in Thomas Harriot:
An Elizabethan Man of Science, ed. R. Fox, pages 153–185, Routledge, London, 2000].

6Similarly, a quadratic equation has two solutions, a quartic has four solutions, and so on. [. . . ] An
example of Harriot’s use of factors and symbols to get complex solutions is found in e.g. British Library
Manuscript *6783 folios 157,156.
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To see the advantage of Harriot’s symbolism, which was not too different from the
modern version I’m using here, and just as transparent, consider solving that pesky
Cardano equation from Bombelli’s starting point of knowing that x = 4. Harriot’s
method suggests that first you write x3 = 15x+ 4 as x3 − 15x− 4 = 0. This is just what
you would have done in high school, and you’d then divide x3 − 15x − 4 by x − 4, to
get

x3 − 15x− 4 = (x− 4)(x2 + 4x+ 1) .

This equals zero when x = 4 or when x2 + 4x + 1. You can complete the square to
solve the quadratic, to find two additional solutions, x = −2 +

√
3 and x = −2 −

√
3,

making a total of three solutions. In this case, all the solutions turn out to be real,
and Cardano’s complicated expression x = 3

√
2 +

√
−121+ 3

√
2−

√
−121 doesn’t come

into it. Or so it seems. . . . Later mathematicians, however, would connect the historical
dots by discovering that in fact complex numbers themselves each have three cube
roots. So, the three real solutions of Cardano’s pesky equation can be recovered from
his algorithm!7

The power of thinking symbolically

The factor approach is elementary today, but it was a huge breakthrough four hun-
dred years ago. Harriot didn’t always use it, and its full, more general implication
(the fundamental theorem of algebra) would not be proved rigorously for another two
centuries. So, following Viète and Cardano, he also devised a whole list of algorithms
for solving various types of quadratic, cubic, and quartic equations. But he was clear
about the value of algebraic symbolism8:

“What need is there for verbose precepts,” he said (for even Viète was wordy),
“when our kind of reduction exhibits all the roots [that is, all the solutions] directly,
not only for this type of equation, but for any other case you like.”

What he was getting at is that generalization is far easier in symbols than in words.
And when you can generalize — when you can see common patterns that apply to
an unexpectedly wide range of problems — you can make extraordinary progress in
science and technology as well as mathematics. For instance, James Clerk Maxwell
was able to show the electromagnetic wave nature of light, and to predict the existence
of radio waves, because his mathematical analysis of electromagnetism turned up the
very same kind of equation that had been used to describe the wave pattern you see

7Following Euler (or figs. 3.4 and 3.6 and related discussion in chap. 3), you can write a complex
number a + ib as r(cos θ + i sin θ) = reiθ, where r =

√
a2 + b2 and θ is found from the inverse cosine

and sine accordingly. From De Moivre’s theorem (or simply from the index laws), the cube root of
this number is 3

√
reiθ = r

1
3 e

i(θ+2kπ)
3 , where k = 0, 1, 2 gives the three different roots. Applying this

to 3
√
2 + 11i + 3

√
2− 11i = r

1
3 e

i(θ+2kπ)
3 + r

1
3 e

i(−θ−2kπ)
3 = 2r

1
3 cos θ+2kπ

3 , you get the three solutions of
Cardano’s equation, x = 4,−2 +

√
3,−2 −

√
3. It is a bit fiddly, but all the steps use only senior high

school or freshman university maths.
8Harriot’s quotation: British Library Additional Manuscript 6783 folio 186.
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when you pluck a guitar or violin string. And Emmy Noether brilliantly generalized
the relationship between mathematical patterns of symmetry and the conservation of
physical quantities such as energy and momentum.

More on these examples later; meantime, Harriot scholar Muriel Seltman sums up
neatly both Harriot’s importance and the power of algebraic symbolism9:

“There is a reciprocal relation between symbolism and mathematical thought-processes,
and it would be hard to overestimate the effect of Harriot’s techniques and clarity of
thought expressed in a symbolism that directs what you do visually and therefore makes
mathematics accessible in a totally new way. . . The visualizability is obvious but pro-
foundly important. It is now possible to manipulate the symbol as if it were the non-
visualizable concept of which the symbol is only the embodiment.”

9Seltman’s quotation on page 184 of her chapter “Harriot’s Algebra” in [R. Fox (ed.), Thomas Harriot:
An Elizabethan Man of Science, Routledge, London, 2000], my emphasis.
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