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A non-right analogue of the Kepler triangle
Friday Michael1

1 Introduction

A Kepler triangle is, first of all, a right triangle, and so the side-
lengths a, b, c, with b < a < c, enjoy the Pythagorean identity:

c2 = a2 + b2 . (1) a

b
c

In addition, the Kepler triangle has the property that its side-lengths form a geometric
progression; for example, with b < a < c, this amounts to

a2 = bc . (2)

Equations (1) and (2) force the ratio of the hypotenuse c to the leg b to be

c

b
= φ . (3)

Here, φ is the Golden Ratio, which is the number

φ =
1 +

√
5

2
. (4)

It is the positive root of φ2 − φ − 1 = 0, so by re-arranging terms and multiplying by
φn−2 for any real number n, we see that φ satisfies the following identities:

φ2 = φ+ 1 and φn = φn−1 + φn−2 . (5)

For more interesting information about the Golden Ratio φ, see [1, 3, 4].

In this article, we provide different descriptions of the Kepler triangle through sev-
eral equivalent statements. We then show that there is a non-right triangle that exhibits
properties similar to those of the Kepler triangle. For the regular Kepler triangle, the
side-lengths also satisfy the identity

(ac)2 = (ab)2 + (bc)2 (6)

which, when re-arranged, becomes 1
b2

= 1
a2
+ 1

c2
. As a result of equations (1) and (6), the

Kepler triangle is the only triangle in which both the side-lengths and the reciprocals of

1Friday Michael is a high school maths teacher at Elton Academy, Richmond Hill, Ontario, Canada.

1



the side-lengths satisfy Pythagorean identities. Furthermore, if we denote the altitudes
from vertices A,B,C by ha, hb, hc respectively, then we always have 1

h2
c
= 1

h2
a
+ 1

h2
b

in
any right triangle with hypotenuse c, by the Inverse Pythagorean Theorem [?]. We will
show that the altitudes in the Kepler triangle also satisfy

h2
b = h2

a + h2
c , (7)

making the Kepler triangle the only triangle in which the three altitudes and the recip-
rocals of the three altitudes satisfy Pythagorean identities. At the same time, we have
h2
a = hbhc, and so the altitudes in a Kepler triangle form a geometric progression. Not

only this, the ratios of the altitudes (or the ratios of the squares of the altitudes) are also
golden, in the sense that

hb

hc

=

(
ha

hc

)2

=

(
hb

ha

)2

= φ .

Since (2) implies
(
1
a

)2
= 1

b
1
c
, we can, in conjunction with the re-arranged version of (6),

describe the Kepler triangle as a triangle in which the reciprocals of the sides form a
geometric progression and the reciprocals of the sides satisfy the Pythagorean identity.
Another feature of the Kepler triangle is that if any of the first four equations above
hold, then the remaining three become equivalent.

Now let R be the radius of the circumcircle of any triangle ABC. For a right triangle
with hypotenuse c, we have c = 2R, and so by (1), we can write

a2 + b2 = 4R2 . (8)

However, the latter equation is not exclusive to right triangles; in fact, if the side-
lengths of a triangle satisfy (8), then either c2 = a2 + b2 or

(
b2 − a2

)2
= (ac)2 + (bc)2.

Equation (8) will be used to study a non-right triangle that exhibits properties similar
to those of the Kepler triangle.

2 Simple characterizations of the Kepler triangle

This section provides a couple of simple equivalent statements
that offer alternative descriptions of the Kepler triangle. Clearly,
there is only one Kepler triangle, up to similarity. The diagram
to the right shows the side-lengths in a typical Kepler triangle. √

φ

1φ

Proposition 1. Let a, b, c be the side-lengths of the Kepler triangle. Then (ac)2 = (ab)2+(bc)2.

Proof. For the Kepler triangle, we take c = φ, b = 1 and a =
√
φ, where φ is the Golden

Ratio. Then

(ac)2 = (
√
φ× φ)2 = φ3

and (ab)2 + (bc)2 = (
√
φ× 1)2 + (1× φ)2 = φ+ φ2 .
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Since φ3 = φ2 + φ by (5), it follows that (ac)2 = (ab)2 + (bc)2. 2

A random right triangle need not satisfy (ac)2 = (ab)2+(bc)2. For example, the very
familiar triangle with c = 5, b = 4 and a = 3 doesn’t.

Proposition 2. Let ha, hb, hc be the altitudes from vertices A,B,C in any triangle ABC.
Then in a right triangle with side-lengths b < a < c, we have that h2

b = h2
a + h2

c if and only if
c
b
= φ. Thus, the Kepler triangle is the only right triangle in which the three altitudes satisfy a

Pythagorean identity.

Proof. Since b < a < c, the altitude hb is the longest and so the only Pythagorean
identity that could hold among the three altitudes ha, hb, hc is the identity h2

b = h2
a + h2

c .
Also, note that in any right triangle with hypotenuse c and legs a, b, we always have

the relationship 1
h2
a
+ 1

h2
b
= 1

h2
c
. The Kepler triangle is unique among right triangles in

that its altitudes are additionally related by the equation h2
b = h2

a + h2
c .

Suppose that c
b
= φ. Then by Proposition 1, we have (ac)2 = (ab)2 + (bc)2. Let R be

the radius of the circumcircle of triangle ABC. Then

ha =
bc

2R
, hb =

ac

2R
, hc =

ab

2R

and so

h2
a + h2

c =
b2

4R2

(
a2 + c2

)
=

(ac)2

4R2
= h2

b .

Conversely, if h2
b = h2

a + h2
c , then using the expressions for ha, hb, hc above, we obtain

(ac)2 = (ab)2 + (cb)2 .

Thus, by Theorem 3 below, c
b

is the Golden Ratio φ. 2

Theorem 3. Suppose that the side-lengths a, b, c (b < a < c) of a triangle satisfy Equation (1).
Then Equations (2), (3), (6) become equivalent. In other words, the following three statements
are equivalent in any right triangle (in which c2 = a2 + b2):

1) the side-lengths b, a, c form a geometric progression;

2) the ratio
c

b
is the Golden Ratio φ ;

3) (ac)2 = (ab)2 + (bc)2 .

Proof. As we mentioned previously, condition 3) can be re-written as 1
b2

= 1
a2
+ 1

c2
. Thus,

the Kepler triangle is the only right triangle in which the reciprocals of the side-lengths
also satisfy the Pythagorean identity.

We establish the above equivalence by showing that 1) =⇒ 2) =⇒ 3) =⇒ 1). So
let’s suppose that 1) holds; that is, that the sequence b, a, c is geometric. Then a2 = bc.
Since c2 = a2 + b2, this means that c2 = bc+ b2, as so

(
c
b

)2 − c
b
− 1 = 0. The positive root

for the equation x2 − x− 1 = 0 is the Golden Ratio φ, so c
b

is this root, and so 2) holds.
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Next, we show that 2) =⇒ 3). Suppose that c
b
= φ. Then

(
c
b

)2− c
b
−1 = φ2−φ−1 = 0,

so c2 − b2 = bc. Since c2 = a2 + b2,

(ac)2 = a2c2 = a2(a2 + b2) =
(
a2
)2

+ (ab)2 =
(
c2 − b2

)2
+ (ab)2 = (bc)2 + (ab)2 .

Thus, 3) holds. Finally, we show that 3) =⇒ 1). Suppose then that (ac)2 = (ab)2+(bc)2.
Since c2 = a2 + b2,

a4 = a2
(
c2 − b2) = (ac)2 − (ab)2 = (bc)2 ,

so a2 = bc. Therefore, the sequence b, a, c is geometric, and 1) holds. 2

Theorem 4. Suppose that the side-lengths a, b, c (b < a < c) of a triangle satisfy Equation (2).
Then Equations (1), (3), (6) become equivalent. In other words, the following three statements
are equivalent for any triangle in which a2 = bc :

1) the triangle is a right triangle with c2 = a2 + b2 ;

2) the ratio
c

b
is the Golden Ratio φ ;

3) (ac)2 = (ab)2 + (bc)2 .

As such, we can describe the Kepler triangle as a triangle in which the side-lengths form a
geometric progression and the ratio of the longest side to the shortest side is golden.

Theorem 5. Suppose that the side-lengths a, b, c (b < a < c) of a triangle satisfy Equation (3).
Then equations (1), (2), (6) become equivalent. In other words, the following three statements
are equivalent for any triangle in which c

b
= φ:

1) the triangle is a right triangle with c2 = a2 + b2 ;

2) the side-lengths form a geometric progression b, a, c ;

3) (ac)2 = (ab)2 + (bc)2.

As such, we can describe the Kepler triangle as a triangle in which the ratio of the longest side
to shortest side is golden, and the reciprocals of the sides satisfy the Pythagorean identity (or,
the “upside-down Pythagorean identity”, in the language of [5]).

Theorem 6. Suppose that the side-lengths a, b, c (b < a < c) of a triangle satisfy Equation (6).
Then equations (1), (2), (3) become equivalent. In other words, the following three statements
are equivalent for any triangle in which (ac)2 = (ab)2 + (bc)2:

1) the triangle is a right triangle with c2 = a2 + b2 ;

2) the side-lengths form a geometric progression b, a, c ;

3) the ratio
c

b
is the Golden Ratio φ .

As such, the Kepler triangle is a triangle in which the reciprocals of the sides satisfy the
Pythagorean identity and at the same time form a geometric progression.
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3 An obtuse triangle of the Kepler type

In this section, our main objective is to establish analogues of Theorems 3–6) in the
setting of non-right triangles satisfying Equation (8). Up to similarity, there is only one
such non-right triangle; and the interior angles, determined from Propositions 7 and 8
below, are approximately 26.6◦, 31.7◦, 121.7◦, respectively.

A B

C

31.7◦
121.7◦

Figure 1: An obtuse, Kepler-type triangle

Proposition 7. Let a, b, c (b > a) be the side-lengths of a non-right triangle ABC, and let R
be the radius of its circumcircle. Then a2 + b2 = 4R2 if and only if

(
b2 − a2

)2
= (ac)2 + (bc)2.

Proof. Write R = c
2 sinC

as per the extended Law of Sines. Suppose that a2 + b2 = 4R2.
Then by the Law of Cosines, c2 = a2 + b2 − 2ab cosC = 4R2 − 2ab cosC, so

cosC
(
(a2 + b2) cosC − 2ab

)
= 4R2 cos2C − 2ab cosC = 4R2 cos2C + c2 − 4R2 = 0 .

Therefore, either cosC = 0 or cosC = 2ab
a2+b2

. Since the given triangle is not a right
triangle, cosC = 2ab

a2+b2
. However, cosC = a2+b2−c2

2ab
, so

2ab

a2 + b2
=

a2 + b2 − c2

2ab
.

Therefore,(
b2 − a2

)2
=
(
a2 + b2

)2 − 4a2b2 =
(
a2 + b2

)2 − (a2 + b2
)(
a2 + b2 − c2

)
= (ac)2 + (bc)2 .

Conversely, suppose that
(
b2 − a2

)2
= (ac)2 + (bc)2; then c2 = (b2−a2)2

a2+b2
, so

cosC =
a2 + b2 − c2

2ab
=

(
a2 + b2

)2 − (b2 − a2
)2

2ab
(
a2 + b2

) =
ab

a2 + b2
.

From this, we find that sin2C =
(

b2−a2

a2+b2

)2
, so

R2 =
c2

4 sin2C
=

(b2−a2)2

a2+b2

4
(
b2−a2

a2+b2

)2 =
a2 + b2

4
.

Therefore, 4R2 = a2 + b2 as desired. 2
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Proposition 8. Suppose that the side-lengths of a non-right triangle satisfy a2 + b2 = 4R2.
Then (ab)2 = (ac)2 + (cb)2 if and only if b

a
is the Golden Ratio φ.

Proof. Since a2+b2 = 4R2, Proposition 7 implies that
(
b2−a2

)2
= (ac)2+(bc)2. Suppose

that (ab)2 = (ac)2 + (cb)2. Then b2 − a2 = ab, so
(
b
a

)2 − b
a
− 1 = 0, and b

a
is therefore

the Golden Ratio φ. Conversely, if b
a
= φ, then

(
b
a

)2 − b
a
− 1 = φ2 − φ − 1 = 0, so

b2 − ab− a2 = 0. Thus, (ab)2 =
(
b2 − a2

)2
= (ac)2 + (bc)2. 2

The above result, and the next four, are analogues of the ones for the Kepler triangle.

Theorem 9 (Analogue of Theorem 3).
Suppose that the side-lengths of a triangle satisfy

(
b2 − a2

)2
= (ac)2 + (bc)2.

Then the following statements are equivalent:

1)
b

a
= φ ;

2) (ab)2 = (ac)2 + (cb)2 ;

3) a, 4
√
5c, b is a geometric sequence.

Proof. The equivalence between 1) and 2) has been shown in Proposition 8 above. We
now show that 1) ⇐⇒ 3). To this end, suppose that b

a
= φ. Let’s compute

√
5c2:

√
5c2 =

√
5
(b2 − a2)2

a2 + b2
=

√
5

a2b2

a2 (1 + φ2)
=

√
5

b2(
5+

√
5

2

) =
b2

φ
=

a2φ2

φ
= a2φ = ab .

Since
√
5c2 = ab, it follows that the sequence a, 4

√
5c, b is geometric, and so 1) =⇒ 3).

Now suppose that a, 4
√
5c, b is geometric; then

√
5c2 = ab. Since

(
b2− a2

)2
=
(
a2+ b2

)
c2,

√
5
(b2 − a2)2

a2 + b2
= ab .

It follows that
√
5
(
b4 − 2b2a2 + a4

)
= ab

(
a2 + b2

)
, and so

√
5

(
b

a

)4

−
(
b

a

)3

− 2
√
5

(
b

a

)2

−
(
b

a

)
+
√
5 = 0 ,

or, expressed differently,(
b

a
−

(
1 +

√
5

2

))(
b

a
−

(
−1 +

√
5

2

))(
√
5

(
b

a

)2

+ 4
b

a
+
√
5

)
= 0 .

The quadratic factor
√
5
(
b
a

)2
+ 4

(
b
a

)
+

√
5 is irreducible and so the only solutions are

b
a
= 1+

√
5

2
or b

a
= −1+

√
5

2
. Since b > a by assumption, b

a
= 1+

√
5

2
= φ . 2
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Theorem 10 (Analogue of Theorem 4).
Suppose that the side-lengths a, b, c of a triangle form a geometric progression a, 4

√
5c, b .

Then the following statements are equivalent:

1)
(
b2 − a2

)2
= (ac)2 + (bc)2 ;

2)
b

a
= φ ;

3) (ab)2 = (ac)2 + (cb)2 .

Proof. Since the sequence a, 4
√
5c, b is geometric, we have

√
5c2 = ab and so 5c4 = (ab)2.

We show that 1) =⇒ 2) =⇒ 3) =⇒ 1). Suppose that
(
b2 − a2

)2
= (ac)2 + (bc)2. Then(

b2 − a2
)2

= c2(a2 + b2) =
ab√
5
(a2 + b2) .

We encountered this equation before and showed that its solution is when b
a

= φ,
proving 2). Next, suppose that 2) is true; that is, b

a
= φ. Then b = φa = 1+

√
5

2
a, so

(ab)2 = 5c4 = c2
(√

5 ab
)
= c2

(√
5φ
)
a2 = c2

(
1 + φ2

)
a2 = c2

(
a2 + b2

)
= (ac)2 + (cb)2 .

Finally, we show that 3) =⇒ 1). Suppose that (ab)2 = (ac)2 + (cb)2. Then

5(ab)4 = 5c4
(
a2 + b2

)2
= (ab)2

(
a2 + b2

)2
,

so
(
a2 + b2

)2
= 5(ab)2. Therefore,(

b2 − a2
)2

=
(
a2 + b2

)2 − 4(ab)2 = 5(ab)2 − 4(ab)2 = (ab)2 = (ac)2 + (cb)2 . 2

Theorem 11 (Analogue of Theorem 5).
Suppose that b

a
is the Golden Ratio φ. Then the following statements are equivalent:

1)
(
b2 − a2

)2
= (ac)2 + (bc)2;

2) (ab)2 = (ac)2 + (cb)2;

3) the sequence a, 4
√
5c, b is geometric.

Proof. Since b
a
= φ, we have b2 − a2 = a2(φ2 − 1) = a2φ = ab. To show that 1) =⇒ 2),

suppose that
(
b2−a2

)2
= (ac)2+(bc)2. Therefore, (ab)2 =

(
b2−a2

)2
= a2b2 = (ac)2+(bc)2.

Next up is to show that 2) =⇒ 3). Suppose that (ab)2 = (ac)2 + (bc)2; then

√
5c2 =

√
5

(ab)2

a2 + b2
=

√
5

a2(φ2a2)

(1 + φ2)a2
= φa2 = ab .

This shows that the sequence a, 4
√
5c, b is geometric. For 3) =⇒ 1), note that b

a
= φ and

the sequence a, 4
√
5c, b being geometric together yield

(
b2 − a2

)2
= (ab)2 = 5c4. But then

c2(a2+ b2) also equals 5c4, following similar calculations as in the proof of the previous
theorem. 2
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Theorem 12 (Analogue of Theorem 6).
Suppose that the side-lengths a, b, c are related via (ab)2 = (ac)2 + (cb)2.
Then the following statements are equivalent:

1)
(
b2 − a2

)2
= (ac)2 + (bc)2 ;

2)
b

a
= φ ;

3) the sequence a, 4
√
5c, b is geometric.

Summary

The obtuse triangle described above (see Figure 1) satisfies
(
b2 − a2

)2
= (ac)2 + (bc)2

and b
a
= φ. This triangle also has other nice properties. Some of these, which we invite

the reader to verify, are:

sinA sinB = sinC ;

1

sin2A
+

1

sin2B
=

1

sin2C
;

the three altitudes satisfy h2
c = h2

a + h2
b ;

the three medians also satisfy m2
c = m2

a +m2
b ;

the nine-point center N lies on AB externally, and |AN | : |NB| = φ6 : 1 .
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