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Solutions 1731–1740
Q1731 Let n = 1204. The factors of n which lie between

√
n and n are

43 , 86 , 172 , 301 , 602 ,

and if we add these up we get our original number, 43 + 86 + 172 + 301 + 602 = 1204.
The same thing works for n = 1316. Find (without asking a computer to do it for you!)
a number between 1204 and 1316 which has the same property.

SOLUTION By carefully studying the given example, we realise that the reason it
works is that 1204 = 28×43, and 28 is a perfect number and 43 is prime. (And 43 > 28:
you may check that it does not work if, for example, n = 28 × 23.) Likewise, 1316 =
28× 47. So we want a number between 1204 and 1316 which is a perfect number times
a prime. The perfect number cannot be 28, as there are no primes between 43 and 47;
and higher perfect numbers are far too large. So we go back to the previous perfect
number, 6: we want a prime p such that

1204 < 6p < 1316 .

This gives 201 ≤ p ≤ 219, and the only prime in this range is p = 211. So the required
number is 6× 211 = 1266.

Comment. It is not true that every number with the stated property is a perfect
number times a prime: you may care to investigate this further.

Q1732 Suppose that the numbers a1, a2, . . . , an are equal to 1, 2, . . . , n, but not neces-
sarily in that order. Find the maximum possible value of

S =

n
∑

k=1

(k − ak)
2 ,

and the values of the ak which give this maximum.

SOLUTION We shall use the fact that
n

∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

which is a standard exercise in proof by mathematical induction. Expanding all the
squares,

S =

n
∑

k=1

k2 − 2

n
∑

k=1

kak +

n
∑

k=1

a2
k
.

Now, the numbers ak are just 1, 2, . . . , n, possibly in a different order, so

n
∑

k=1

a2
k
=

n
∑

k=1

k2
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and we have

S = 2

n
∑

k=1

k2 − 2

n
∑

k=1

kak .

We need to find the arrangement of 1, 2, . . . , n which gives the minimum value of the
second sum. This will occur when the ak have the values from 1 to n in decreasing
order. To prove this, note that if the ak are not in decreasing order, then we must have
ak < ak+1 for some k. Compare the sum S1 we have in this case with the sum S2

obtained by interchanging ak and ak+1. We have

S1 = a1 + 2a2 + · · ·+ kak + (k + 1)ak+1 + · · ·+ nan

S2 = a1 + 2a2 + · · ·+ kak+1 + (k + 1)ak + · · ·+ nan ;

since most of the terms in the two sums are the same,

S1 − S2 = (kak + (k + 1)ak+1)− (kak+1 + (k + 1)ak)

= ak+1 − ak

> 0 .

That is, S2 < S1, and so S1 does not give the minimum value of the sum a1+2a2+ · · ·+
nan. This will apply to any arrangement in which we ever have ak < ak+1, and so the
arrangement we require is a1 = n, a2 = n − 1, . . . , an = 1; that is, ak = n + 1 − k. The
maximum value of S is

S = 2
n

∑

k=1

k2 − 2
n

∑

k=1

k(n+ 1− k)

= 4

n
∑

k=1

k2 − 2(n+ 1)

n
∑

k=1

k

=
4n(n+ 1)(2n+ 1)

6
− 2(n+ 1)

n(n+ 1)

2

=
(n− 1)n(n+ 1)

3
.

Solution received from Henry Ricardo, New York, who points out that the idea
we have used here is an example of a rearrangement inequality . Let x1, x2, . . . , xn be
positive real numbers in increasing order, and let y1, y2, . . . , yn be positive numbers. If
we consider all sums

x1z1 + x2z2 + · · ·+ xnzn

in which the numbers z1, z2, . . . , zn are a rearrangement of y1, y2, . . . , yn, then the max-
imum value of the sum is obtained when the zs are arranged in increasing order, and
the minimum is obtained when the zs are arranged in decreasing order. To prove this,
essentially follow the argument in the above solution, or see this Parabola article.

Rasul Gasimli also sent a solution including a careful proof that a1 > a2 > · · · > an.
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Q1733 Alain is participating in a motor trial over a fixed distance, where each com-
petitor is allocated a target time and has to drive at a fixed speed in order to reach the
finish line exactly on time. Alain has his speed all worked out; but just as he is about to
start, he is informed that his time allocation has been decreased by 10% because of fi-
nancial irregularities by his support team. “No problem”, says Alain, “I’ll just increase
my speed by 10%”. And so he did. And at the end of his allocated time, he was still
some distance short of the finish. What went wrong?

SOLUTION Let Alain’s original time be t, and his original speed v (in suitable units).
Then the distance to be travelled is

x = vt .

Since his time was decreased by 10% and his speed increased by 10%, the distance he
actually travelled was

(

v + 10%v
)(

t− 10%t
)

= (1.1v)(0.9t) = 0.99vt = 0.99x ,

which is obviously less than x.

What Alain didn’t realise is that in this context, a percentage is always a percentage
of some existing figure . So a decrease of 10% of some quantity is not compensated for
by an increase of 10% of the decreased quantity.

Q1734 How many functions f from { 1, 2, 3, 4, 5 } to { 1, 2, . . . , 9, 10 } satisfy the condi-
tions

f(1) < f(2) ≤ f(3) < f(4) ≤ f(5) ?

SOLUTION Let

x1 = f(1) , x2 = f(2)− f(1) , x3 = f(3)− f(2) ,

x4 = f(4)− f(3) , x5 = f(5)− f(4) , x6 = 10− f(5) .

Then x1, . . . , x6 are integers satisfying

x1 + x2 + x3 + x4 + x5 + x6 = 10

x1 ≥ 1 , x2 ≥ 1 , x3 ≥ 0 , x4 ≥ 1 , x5 ≥ 0 , x6 ≥ 0 .

Conversely, any x1, . . . , x6 satisfying these conditions will give a choice of f(1), . . . , f(5).
We can count the number of possibilities for x1, . . . , x6 by using the “dots and lines”
method. Since x1 + x2 + x3 + x4 + x5 + x6 = 10, imagine a row of 10 dots, combined
with 5 lines separating the dots into 6 sections. The number of dots in the first section
will be the value of x1, and so on. For example, the arrangement

• • | • | | • • • • • | • • |

would correspond to the solution x1 = 2, x2 = 1, x3 = 0, x4 = 5, x5 = 2, x6 = 0. Since
we require x1, x2, x4 ≥ 1 we shall reserve one dot for each of sections 1, 2, 4; it remains
to arrange 7 dots and 5 lines in a row. The number of ways of doing so is C(12, 5) = 792.
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Q1735 Let P be a point inside △ABC; let AP,BP,CP meet the sides BC,CA,AB at
the points D,E, F , respectively. Show that

|AE|
|EC| +

|AF |
|FB| =

|AP |
|PD| .

SOLUTION In the diagram, the areas of smaller triangles are denoted by a1, . . . , a6 as
shown.

A

B

C

D

E

F
P

a1

a2
a3a4

a5

a6

The areas of triangles with the same altitude are proportional to their bases. Using this
fact in △APE, △EPC and also in △ABE, △EBC, we have

|AE|
|EC| =

a4
a3

=
a4 + a5 + a6
a1 + a2 + a3

.

Similar arguments give
|AF |
|FB| =

a5
a6

=
a3 + a4 + a5
a6 + a1 + a2

and
|AP |
|PD| =

a5 + a6
a1

=
a3 + a4

a2
. (∗)

Now for any positive quantities w, x, y, z, we have the equivalences

w

x
=

y

z
⇔ wz = xy ⇔ wz + yz = xy + zy ⇔ w + y

x+ z
=

y

z
.

Applying this to (∗) gives

|AP |
|PD| =

a5 + a6 + a3 + a4
a1 + a2

;

and to the previous equations,

|AE|
|EC| +

|AF |
|FB| =

a5 + a6
a1 + a2

+
a3 + a4
a1 + a2

=
|AP |
|PD|

as required.

Q1736 If a polynomial f(x) is divided by x− a, the remainder is a constant r; if f(x)
is divided by x− b, where b 6= a, the remainder is s. If f(x) is divided by (x− a)(x− b),
then the remainder will be a linear polynomial. Find it.

4



SOLUTION Write
f(x) = (x− a)(x− b)q(x) + (cx+ d) ; (∗)

we seek to find the linear polynomial cx+ d. Now we have

f(x) = (x− a)g(x) + r , f(x) = (x− b)h(x) + s

for some polynomials g(x), h(x). By equating the first of these expressions with (∗) and
doing a little algebra, we obtain

(x− a)g(x)− (x− a)(x− b)q(x) = (cx+ d)− r = c(x− a) + (ca+ d− r) ,

so the polynomial x − a is a factor of the constant ca + d − r. The only way this can
happen is if the constant is zero: so ca+d = r. By a similar procedure, we find cb+d = s,
and solving these two equations gives

c =
r − s

a− b
, d =

as− br

a− b
.

Therefore, the remainder polynomial we seek is

r − s

a− b
x+

as− br

a− b
.

Solution received from Ibrahim Aghazada, ADA University, Azerbaijan.

Q1737 Find all integers n for which
√
2024n+ 1 is a positive integer.

SOLUTION Note the factorisation 2024 = 23 × 11× 23. Suppose that
√
2024n+ 1 = m

is a positive integer. This can be written as

2024n = m2 − 1 = (m− 1)(m+ 1) ,

and it is clear that m must be an odd number. Furthermore, this means that m− 1 and
m + 1 are two consecutive even numbers, one of them must be a multiple of 4, and so
(m − 1)(m + 1) is divisible by 8. To complete the problem, we need to find all m such
that 11× 23 is a factor of (m− 1)(m+ 1). This will be so if and only if either one of the
factors m − 1 and m + 1 is a multiple of 11 and the other is a multiple of 23, or one of
them is a multiple of 11 × 23 = 253. So there are four cases to consider. We shall use
the notation a | b to denote that a is a factor of b.

• If 253 | m − 1, then we can write m = 1 + 253s, where s is an integer. Since we
know that m is odd, s must be even, s = 2t, and we have m = 1 + 506t for some
integer t ≥ 0.

• Similarly, if 253 | m+ 1, then we find

m = −1 + 253s = 505 + 253(s− 2) = 505 + 506t ,

where t is an integer and t ≥ 0.
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• Now suppose that 11 | m − 1 and 23 | m + 1. There is a standard procedure
for solving this kind of problem – look up “Chinese Remainder Theorem” – but
we shall take a more “low–tech” approach. We write the second statement as
m+ 1 = 23r and substitute into the first, giving

11 | 23r − 2 ⇔ 11 | 22r + (r − 2)

⇔ 11 | r − 2

⇔ r = 2 + 11s , s ∈ Z .

Substituting back gives m = 45 + 253s; as above, m is odd and so this can be
written m = 45 + 506t with t ≥ 0.

• The remaining case is 11 | m + 1, 23 | m − 1. We invite readers to solve this by
using the method of the previous case to show that m = 461 + 506t with t ≥ 0.

Combining our four solutions gives all possible values for n as

n =
(a+ 506t)2 − 1

2024
,

where a = 1, 45, 461 or 505 and t is an integer, t ≥ 0.

Solution received: Ilkin Hasanov, ADA University, Azerbaijan, sent an excellent
solution using the Chinese Remainder Theorem.

Q1738 Find the smallest set of numbers S which has the properties

• 1 is in S;

• if a, b are any numbers in S, then 1/(a+ b) is also in S.

SOLUTION The smallest possible set S is the set of all fractions (rational numbers)
from 1

2
to 1, inclusive. To prove this, we have to show that S has the stated properties;

and also, that any set satisfying these properties must include every element of S.

The first part is very easy: it is clear that 1 is in S; and if we take any two fractions
from 1

2
to 1, then their sum is a fraction from 1 to 2 and the reciprocal of the sum is a

fraction from 1

2
to 1.

Conversely, let T be any set having the stated properties; we need to show that T
includes every fraction from 1

2
to 1. We shall do this by using induction on q to prove

the statement

“T contains every fraction with denominator q between 1

2
and 1”.

This is certainly true when q = 1, for the only relevant fraction is 1

1
= 1, and this is in T

by assumption.

Now consider a fraction p/q from 1

2
to 1 with q ≥ 2, and suppose we already know

that T contains all fractions from 1

2
to 1 having denominator smaller than q. Since we

also already know that 1 is in T , we may assume that p/q < 1 and so p < q.
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We study separately the cases when q is odd and when q is even.

If q is even, say q = 2r, then we have

1

2
≤ p

2r
< 1 ,

so r ≤ p < 2r, which can be written as

1

2
<

r

p
≤ 1 .

Since p < q, we know that r/p is in T , and therefore so is

1

(r/p) + (r/p)
=

p

2r
=

p

q
.

So this case is finished. If q is odd, then let q = 2r + 1. Again, we have

1

2
≤ p

2r + 1
< 1 ,

so 2r + 1 ≤ 2p and p < 2r + 1. Now since 2r + 1 is odd and 2p is even, it follows from
the first of these that 2r + 2 ≤ 2p; since p and 2r + 1 are both integers, it follows from
the second that p ≤ 2r. Therefore, we have

1

2
≤ r

p
<

r + 1

p
≤ 1 .

Once again we recall that p < q: so we know that T contains both r/p and (r + 1)/p,
and hence also contains

1

(r/p) +
(

(r + 1)/p
) =

p

2r + 1
=

p

q
.

By mathematical induction, T contains every fraction from 1

2
to 1. Thus, S is the small-

est possible set having the given properties.

Q1739 A sequence is defined by a1 = 1, a2 = m and

an+1 =
a2
n
− 1

an−1

for n ≥ 2. Here, m is a fixed integer. Prove that every term an is an integer.

SOLUTION It is not hard to check that the first four terms of the sequence are integers:
this is given for a1, a2, and then we have

a3 = m2 − 1 , a4 =
(m2 − 1)2 − 1

m
= m3 − 2m .

7



We shall prove that if the values of four successive terms in the sequence are known to
be integers, then the next term is also an integer: it will follow by induction that every
term in the sequence is an integer.

So, suppose that n is an integer, n ≥ 4 and that an−3, an−2, an−1 and an are integers.
From the given recurrence, we have

an−2an = a2
n−1 − 1 , an−3an−1 = a2

n−2 − 1 ,

and therefore

a2
n−2(a

2

n
− 1) = a4

n−1 − 2a2
n−1 − an−3an−1 = an−1(a

3

n−1 − 2an−1 − an−3) .

Therefore, an−1 is a factor of a2
n−2(a

2
n
− 1). But the equation

a2
n−1 − anan−2 = 1

implies that an−1 and an−2 have no common factor (any common factor would also be
a factor of 1); therefore, an−1 is a factor of a2

n
− 1, and so

an+1 =
a2
n
− 1

an−1

is an integer.

Alternative solution. We prove by induction that, if n ≥ 2, then

an+1 = man − an−1 . (∗)
First, we can use expressions calculated in our previous solution to see that for n = 2
and n = 3 this statement says

m2 − 1 = m(m)− 1 and m3 − 2m = m(m2 − 1)−m ,

both of which are clearly true. Suppose that (∗) is true for two consecutive integers
n− 1 and n; and note that from the given recurrence,

an+2 =
a2
n+1 − 1

an
and an =

a2
n−1 − 1

an−2

.

Then we have

an+2 =
a2
n+1 − 1

an

=
(man − an−1)

2 − 1

an

= m2an − 2man−1 +
a2
n−1 − 1

an
= m2an − 2man−1 + an−2

= m(man − an−1)− (man−1 − an−2)

= man+1 − an ,

so that (∗) is also true for n + 1. It follows by induction that (∗) is true for all n, and it
is then clear that every term of the sequence is an integer.
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Q1740 Let a be an integer. Find the number of integers b such that the quadratic

(x+ a)(x+ b) + 2024

can be factorised as the product of two linear factors with integer coefficients.

SOLUTION Since a is an integer, we can write the factorisation as

(x+ a)(x+ b) + 2024 = (x+ a + r)(x+ a+ s) . (∗)

Expanding and equating coefficients gives

a+ b = 2a+ r + s , ab+ 2024 = (a + r)(a+ s) .

Solving the first equation for b, then taking the second equation minus a times the first
and simplifying, yields

b = a + r + s , rs = 2024 .

Conversely, if these conditions hold, then it is routine to check that we have the fac-
torisation (∗). Therefore, the number of possible values for r is the number of fac-
tors of 2024; and each r gives one possibility for s and hence one for b. Since the
prime factorisation of 2024 is 23 × 111 × 231, the number of positive factors of 2024 is
(3+1)(1+1)(1+1) = 16, and the total number of factors (for r and s could be negative)
is twice this. So there are 32 possibilities for (r, s). However, interchanging r and s
gives a different possibility for (r, s), but the same possibility for b = a + r + s. So the
number of possibilities for b is half of 32, that is, 16.

If you need some explanation of the formula we used for counting the divisors of
2024, then search online for “number of divisors formula”.
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